Run
9201675

Run 9201675

Task 146825 (Supervised Classification) Fashion-MNIST Uploaded 19-05-2018 by Irfan Nur Afif
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

keras.wrappers.scikit_learn.KerasClassifier(2)Automatically created scikit-learn flow.
keras.wrappers.scikit_learn.KerasClassifier(2)_batch_size128
keras.wrappers.scikit_learn.KerasClassifier(2)_build_fn"def squeezenet_fmnist():\n input_layer = Input(shape=(784,), name=\"input\")\n reshape_layer=Reshape((28, 28,1))(input_layer)\n conv1 = Convolution2D(96, 3, 3, activation='relu', init='glorot_uniform',subsample=(2,2),border_mode='valid')(reshape_layer)\n maxpool1 = MaxPooling2D(pool_size=(2,2))(conv1)\n fire2_squeeze = Convolution2D(16, 1, 1, activation='relu', init='glorot_uniform',border_mode='same')(maxpool1)\n fire2_expand1 = Convolution2D(64, 1, 1, activation='relu', init='glorot_uniform',border_mode='same')(fire2_squeeze)\n fire2_expand2 = Convolution2D(64, 3, 3, activation='relu', init='glorot_uniform',border_mode='same')(fire2_squeeze)\n merge1 = merge(inputs=[fire2_expand1, fire2_expand2], mode=\"concat\", concat_axis=1)\n fire2 = Activation(\"linear\")(merge1)\n fire3_squeeze = Convolution2D(16, 1, 1, activation='relu', init='glorot_uniform',border_mode='same')(fire2)\n fire3_expand1 = Convolution2D(64, 1, 1, activation='relu', init='glorot_uniform',border_mode='same')(fire3_squeeze)\n fire3_expand2 = Convolution2D(64, 3, 3, activation='relu', init='glorot_uniform',border_mode='same')(fire3_squeeze)\n merge2 = merge(inputs=[fire3_expand1, fire3_expand2], mode=\"concat\", concat_axis=1)\n fire3 = Activation(\"linear\")(merge2)\n fire4_squeeze = Convolution2D(32, 1, 1, activation='relu', init='glorot_uniform',border_mode='same')(fire3)\n fire4_expand1 = Convolution2D(128, 1, 1, activation='relu', init='glorot_uniform',border_mode='same')(fire4_squeeze)\n fire4_expand2 = Convolution2D(128, 3, 3, activation='relu', init='glorot_uniform',border_mode='same')(fire4_squeeze)\n merge3 = merge(inputs=[fire4_expand1, fire4_expand2], mode=\"concat\", concat_axis=1)\n fire4 = Activation(\"linear\")(merge3)\n maxpool4 = MaxPooling2D((2,2))(fire4)\n fire5_squeeze = Convolution2D(32, 1, 1, activation='relu', init='glorot_uniform',border_mode='same')(maxpool4)\n fire5_expand1 = Convolution2D(128, 1, 1, activation='relu', init='glorot_uniform',"
keras.wrappers.scikit_learn.KerasClassifier(2)_epochs3
keras.wrappers.scikit_learn.KerasClassifier(2)_verbose1

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.9824 ± 0.0024
Per class
Cross-validation details (10-fold Crossvalidation)
0.8306 ± 0.0414
Per class
Cross-validation details (10-fold Crossvalidation)
0.8113 ± 0.0433
Cross-validation details (10-fold Crossvalidation)
57713.4792 ± 231.0045
Cross-validation details (10-fold Crossvalidation)
0.0456 ± 0.0082
Cross-validation details (10-fold Crossvalidation)
0.18
Cross-validation details (10-fold Crossvalidation)
70000
Per class
Cross-validation details (10-fold Crossvalidation)
0.8324 ± 0.0226
Per class
Cross-validation details (10-fold Crossvalidation)
0.8302 ± 0.039
Cross-validation details (10-fold Crossvalidation)
3.3219
Cross-validation details (10-fold Crossvalidation)
0.8302 ± 0.039
Per class
Cross-validation details (10-fold Crossvalidation)
0.2533 ± 0.0456
Cross-validation details (10-fold Crossvalidation)
0.3
Cross-validation details (10-fold Crossvalidation)
0.1557 ± 0.0157
Cross-validation details (10-fold Crossvalidation)
0.519 ± 0.0523
Cross-validation details (10-fold Crossvalidation)