Run
9201655

Run 9201655

Task 43 (Supervised Classification) spambase Uploaded 16-05-2018 by Jeroen van Hoof
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalim puter=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preproce ssing.data.OneHotEncoder))(2)Automatically created scikit-learn flow.
sklearn.preprocessing.data.OneHotEncoder(21)_categorical_features[false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false]
sklearn.preprocessing.data.OneHotEncoder(21)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(21)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(21)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(21)_sparsefalse
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(2)_crossover_rate0.1
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(2)_cv5
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(2)_disable_update_checkfalse
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(2)_early_stopnull
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(2)_generations1000000
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(2)_max_eval_time_mins1
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(2)_max_time_mins6
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(2)_memorynull
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(2)_mutation_rate0.9
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(2)_n_jobs1
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(2)_offspring_size100
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(2)_periodic_checkpoint_foldernull
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(2)_population_size100
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(2)_random_state27484
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(2)_refittrue
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(2)_retry_on_errortrue
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(2)_scoringnull
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(2)_subsample1.0
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(2)_verbosefalse
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(2)_verbosity0
arbok.tpot.TPOTWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(2)_warm_startfalse
sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder)(3)_memorynull
arbok.preprocessing.ConditionalImputer(3)_axis0
arbok.preprocessing.ConditionalImputer(3)_categorical_features[false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false]
arbok.preprocessing.ConditionalImputer(3)_copytrue
arbok.preprocessing.ConditionalImputer(3)_fill_emptynull
arbok.preprocessing.ConditionalImputer(3)_missing_values"NaN"
arbok.preprocessing.ConditionalImputer(3)_strategy"mean"
arbok.preprocessing.ConditionalImputer(3)_strategy_nominal"most_frequent"
arbok.preprocessing.ConditionalImputer(3)_verbose0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

17 Evaluation measures

0.9828 ± 0.0067
Per class
Cross-validation details (10-fold Crossvalidation)
0.9519 ± 0.0132
Per class
Cross-validation details (10-fold Crossvalidation)
0.8992 ± 0.0279
Cross-validation details (10-fold Crossvalidation)
4043.4707 ± 15.0788
Cross-validation details (10-fold Crossvalidation)
0.0593 ± 0.0168
Cross-validation details (10-fold Crossvalidation)
0.4776 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
4601
Per class
Cross-validation details (10-fold Crossvalidation)
0.9519 ± 0.013
Per class
Cross-validation details (10-fold Crossvalidation)
0.952 ± 0.0131
Cross-validation details (10-fold Crossvalidation)
0.9674
Cross-validation details (10-fold Crossvalidation)
0.952 ± 0.0131
Per class
Cross-validation details (10-fold Crossvalidation)
0.1241 ± 0.0353
Cross-validation details (10-fold Crossvalidation)
0.4886 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.1988 ± 0.0256
Cross-validation details (10-fold Crossvalidation)
0.4069 ± 0.0525
Cross-validation details (10-fold Crossvalidation)