Run
9201637

Run 9201637

Task 31 (Supervised Classification) credit-g Uploaded 13-05-2018 by Jeroen van Hoof
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline (conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sk learn.preprocessing.data.OneHotEncoder))(1)Automatically created scikit-learn flow.
sklearn.preprocessing.data.OneHotEncoder(17)_categorical_features[true, false, true, true, false, true, true, false, true, true, false, true, false, true, true, false, true, false, true, true]
sklearn.preprocessing.data.OneHotEncoder(17)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(17)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(17)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(17)_sparsefalse
sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder)(1)_memorynull
arbok.preprocessing.ConditionalImputer(1)_axis0
arbok.preprocessing.ConditionalImputer(1)_categorical_features[true, false, true, true, false, true, true, false, true, true, false, true, false, true, true, false, true, false, true, true]
arbok.preprocessing.ConditionalImputer(1)_copytrue
arbok.preprocessing.ConditionalImputer(1)_fill_emptynull
arbok.preprocessing.ConditionalImputer(1)_missing_values"NaN"
arbok.preprocessing.ConditionalImputer(1)_strategy"mean"
arbok.preprocessing.ConditionalImputer(1)_strategy_nominal"most_frequent"
arbok.preprocessing.ConditionalImputer(1)_verbose0
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_delete_output_folder_after_terminatetrue
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_delete_tmp_folder_after_terminatetrue
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_disable_evaluator_outputfalse
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_ensemble_nbest50
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_ensemble_size50
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_exclude_estimatorsnull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_exclude_preprocessorsnull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_get_smac_object_callbacknull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_include_estimatorsnull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_include_preprocessorsnull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_initial_configurations_via_metalearning25
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_ml_memory_limit3072
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_output_foldernull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_per_run_time_limit5
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_refittrue
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_resampling_strategy"holdout"
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_resampling_strategy_argumentsnull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_retry_on_errortrue
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_seed1
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_shared_modefalse
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_smac_scenario_argsnull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_time_left_for_this_task26
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_tmp_foldernull
arbok.autosklearn.AutoSklearnWrapper(preprocessor=sklearn.pipeline.Pipeline(conditionalimputer=arbok.preprocessing.ConditionalImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder))(1)_verbosetrue

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

17 Evaluation measures

0.6624 ± 0.0407
Per class
Cross-validation details (10-fold Crossvalidation)
0.743 ± 0.0335
Per class
Cross-validation details (10-fold Crossvalidation)
0.3643 ± 0.0838
Cross-validation details (10-fold Crossvalidation)
392.0327 ± 7.6848
Cross-validation details (10-fold Crossvalidation)
0.238 ± 0.0301
Cross-validation details (10-fold Crossvalidation)
0.4202
Cross-validation details (10-fold Crossvalidation)
1000
Per class
Cross-validation details (10-fold Crossvalidation)
0.7486 ± 0.0397
Per class
Cross-validation details (10-fold Crossvalidation)
0.762 ± 0.0301
Cross-validation details (10-fold Crossvalidation)
0.8818
Cross-validation details (10-fold Crossvalidation)
0.762 ± 0.0301
Per class
Cross-validation details (10-fold Crossvalidation)
0.5665 ± 0.0717
Cross-validation details (10-fold Crossvalidation)
0.4583
Cross-validation details (10-fold Crossvalidation)
0.4879 ± 0.0305
Cross-validation details (10-fold Crossvalidation)
1.0646 ± 0.0666
Cross-validation details (10-fold Crossvalidation)