Run
9201453

Run 9201453

Task 9896 (Supervised Classification) dbworld-subjects-stemmed Uploaded 06-05-2018 by Benjamin Strang
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.19.1. study_123
Issue #Downvotes for this reason By


Flow

sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeli ne.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one- hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding= sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scal ing=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.tree.tree. DecisionTreeClassifier))(1)Automatically created scikit-learn flow.
mylib.preprocessing_openml14.ConditionalImputer(1)_axis0
mylib.preprocessing_openml14.ConditionalImputer(1)_categorical_features[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228]
mylib.preprocessing_openml14.ConditionalImputer(1)_copytrue
mylib.preprocessing_openml14.ConditionalImputer(1)_fill_empty0
mylib.preprocessing_openml14.ConditionalImputer(1)_missing_values"NaN"
mylib.preprocessing_openml14.ConditionalImputer(1)_strategy"median"
mylib.preprocessing_openml14.ConditionalImputer(1)_strategy_nominal"most_frequent"
mylib.preprocessing_openml14.ConditionalImputer(1)_verbose0
sklearn.preprocessing.data.OneHotEncoder(17)_categorical_features[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228]
sklearn.preprocessing.data.OneHotEncoder(17)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(17)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(17)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(17)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(11)_threshold0.0
sklearn.preprocessing.data.StandardScaler(5)_copytrue
sklearn.preprocessing.data.StandardScaler(5)_with_meanfalse
sklearn.preprocessing.data.StandardScaler(5)_with_stdtrue
sklearn.tree.tree.DecisionTreeClassifier(18)_class_weightnull
sklearn.tree.tree.DecisionTreeClassifier(18)_criterion"gini"
sklearn.tree.tree.DecisionTreeClassifier(18)_max_depth1
sklearn.tree.tree.DecisionTreeClassifier(18)_max_featuresnull
sklearn.tree.tree.DecisionTreeClassifier(18)_max_leaf_nodesnull
sklearn.tree.tree.DecisionTreeClassifier(18)_min_impurity_decrease0.0
sklearn.tree.tree.DecisionTreeClassifier(18)_min_impurity_splitnull
sklearn.tree.tree.DecisionTreeClassifier(18)_min_samples_leaf1
sklearn.tree.tree.DecisionTreeClassifier(18)_min_samples_split2
sklearn.tree.tree.DecisionTreeClassifier(18)_min_weight_fraction_leaf0.0
sklearn.tree.tree.DecisionTreeClassifier(18)_presortfalse
sklearn.tree.tree.DecisionTreeClassifier(18)_random_state1
sklearn.tree.tree.DecisionTreeClassifier(18)_splitter"best"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.tree.tree.DecisionTreeClassifier))(1)_cv3
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.tree.tree.DecisionTreeClassifier))(1)_error_score"raise"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.tree.tree.DecisionTreeClassifier))(1)_fit_paramsnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.tree.tree.DecisionTreeClassifier))(1)_iidtrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.tree.tree.DecisionTreeClassifier))(1)_n_iter60
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.tree.tree.DecisionTreeClassifier))(1)_n_jobs-1
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.tree.tree.DecisionTreeClassifier))(1)_param_distributions{"classifier__criterion": ["gini", "entropy"], "classifier__max_features": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], "imputation__strategy": ["mean", "median", "most_frequent"]}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.tree.tree.DecisionTreeClassifier))(1)_pre_dispatch"2*n_jobs"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.tree.tree.DecisionTreeClassifier))(1)_random_state1
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.tree.tree.DecisionTreeClassifier))(1)_refittrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.tree.tree.DecisionTreeClassifier))(1)_return_train_score"warn"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.tree.tree.DecisionTreeClassifier))(1)_scoringnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.tree.tree.DecisionTreeClassifier))(1)_verbose0
sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.tree.tree.DecisionTreeClassifier)(1)_memorynull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.6502 ± 0.1572
Per class
Cross-validation details (10-fold Crossvalidation)
0.5966 ± 0.0216
Per class
Cross-validation details (10-fold Crossvalidation)
0.2107 ± 0.3173
Cross-validation details (10-fold Crossvalidation)
8.0233 ± 1.2852
Cross-validation details (10-fold Crossvalidation)
0.4382 ± 0.0938
Cross-validation details (10-fold Crossvalidation)
0.4957 ± 0.005
Cross-validation details (10-fold Crossvalidation)
64
Per class
Cross-validation details (10-fold Crossvalidation)
0.6369 ± 0.0134
Per class
Cross-validation details (10-fold Crossvalidation)
0.625 ± 0.1534
Cross-validation details (10-fold Crossvalidation)
0.994
Cross-validation details (10-fold Crossvalidation)
0.625 ± 0.1534
Per class
Cross-validation details (10-fold Crossvalidation)
0.8839 ± 0.1866
Cross-validation details (10-fold Crossvalidation)
0.4978 ± 0.0051
Cross-validation details (10-fold Crossvalidation)
0.472 ± 0.0688
Cross-validation details (10-fold Crossvalidation)
0.9481 ± 0.1344
Cross-validation details (10-fold Crossvalidation)