Run
9200396

Run 9200396

Task 146195 (Supervised Classification) connect-4 Uploaded 06-05-2018 by Benjamin Strang
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.19.1. study_123
Issue #Downvotes for this reason By


Flow

sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeli ne.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one- hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding= sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scal ing=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.neural_net work.multilayer_perceptron.MLPClassifier))(1)Automatically created scikit-learn flow.
mylib.preprocessing_openml14.ConditionalImputer(1)_axis0
mylib.preprocessing_openml14.ConditionalImputer(1)_categorical_features[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]
mylib.preprocessing_openml14.ConditionalImputer(1)_copytrue
mylib.preprocessing_openml14.ConditionalImputer(1)_fill_empty0
mylib.preprocessing_openml14.ConditionalImputer(1)_missing_values"NaN"
mylib.preprocessing_openml14.ConditionalImputer(1)_strategy"median"
mylib.preprocessing_openml14.ConditionalImputer(1)_strategy_nominal"most_frequent"
mylib.preprocessing_openml14.ConditionalImputer(1)_verbose0
sklearn.preprocessing.data.OneHotEncoder(17)_categorical_features[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]
sklearn.preprocessing.data.OneHotEncoder(17)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(17)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(17)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(17)_sparsefalse
sklearn.feature_selection.variance_threshold.VarianceThreshold(11)_threshold0.0
sklearn.preprocessing.data.StandardScaler(5)_copytrue
sklearn.preprocessing.data.StandardScaler(5)_with_meantrue
sklearn.preprocessing.data.StandardScaler(5)_with_stdtrue
sklearn.neural_network.multilayer_perceptron.MLPClassifier(10)_activation"logistic"
sklearn.neural_network.multilayer_perceptron.MLPClassifier(10)_alpha0.0001
sklearn.neural_network.multilayer_perceptron.MLPClassifier(10)_batch_size"auto"
sklearn.neural_network.multilayer_perceptron.MLPClassifier(10)_beta_10.9
sklearn.neural_network.multilayer_perceptron.MLPClassifier(10)_beta_20.999
sklearn.neural_network.multilayer_perceptron.MLPClassifier(10)_early_stoppingfalse
sklearn.neural_network.multilayer_perceptron.MLPClassifier(10)_epsilon1e-08
sklearn.neural_network.multilayer_perceptron.MLPClassifier(10)_hidden_layer_sizes[100]
sklearn.neural_network.multilayer_perceptron.MLPClassifier(10)_learning_rate"constant"
sklearn.neural_network.multilayer_perceptron.MLPClassifier(10)_learning_rate_init0.001
sklearn.neural_network.multilayer_perceptron.MLPClassifier(10)_max_iter2000
sklearn.neural_network.multilayer_perceptron.MLPClassifier(10)_momentum0.9
sklearn.neural_network.multilayer_perceptron.MLPClassifier(10)_nesterovs_momentumtrue
sklearn.neural_network.multilayer_perceptron.MLPClassifier(10)_power_t0.5
sklearn.neural_network.multilayer_perceptron.MLPClassifier(10)_random_state3
sklearn.neural_network.multilayer_perceptron.MLPClassifier(10)_shuffletrue
sklearn.neural_network.multilayer_perceptron.MLPClassifier(10)_solver"adam"
sklearn.neural_network.multilayer_perceptron.MLPClassifier(10)_tol0.0001
sklearn.neural_network.multilayer_perceptron.MLPClassifier(10)_validation_fraction0.1
sklearn.neural_network.multilayer_perceptron.MLPClassifier(10)_verbosefalse
sklearn.neural_network.multilayer_perceptron.MLPClassifier(10)_warm_startfalse
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.neural_network.multilayer_perceptron.MLPClassifier))(1)_cv3
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.neural_network.multilayer_perceptron.MLPClassifier))(1)_error_score"raise"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.neural_network.multilayer_perceptron.MLPClassifier))(1)_fit_paramsnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.neural_network.multilayer_perceptron.MLPClassifier))(1)_iidtrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.neural_network.multilayer_perceptron.MLPClassifier))(1)_n_iter250
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.neural_network.multilayer_perceptron.MLPClassifier))(1)_n_jobs-1
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.neural_network.multilayer_perceptron.MLPClassifier))(1)_param_distributions{"classifier__alpha": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "mylib.distributions.loguniform_gen", "a": 1e-07, "b": 0.1, "args": [], "kwds": {"base": 10, "low": 1e-07, "high": 0.1}}}, "classifier__early_stopping": [true, false], "classifier__hidden_layer_sizes": [[128, 128], [128], [64, 64], [64], [32, 32], [32]], "classifier__learning_rate_init": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "mylib.distributions.loguniform_gen", "a": 1e-05, "b": 1, "args": [], "kwds": {"base": 10, "low": 1e-05, "high": 1}}}, "classifier__tol": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "mylib.distributions.loguniform_gen", "a": 1e-05, "b": 0.1, "args": [], "kwds": {"base": 10, "low": 1e-05, "high": 0.1}}}, "imputation__strategy": ["mean", "median", "most_frequent"]}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.neural_network.multilayer_perceptron.MLPClassifier))(1)_pre_dispatch"2*n_jobs"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.neural_network.multilayer_perceptron.MLPClassifier))(1)_random_state3
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.neural_network.multilayer_perceptron.MLPClassifier))(1)_refittrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.neural_network.multilayer_perceptron.MLPClassifier))(1)_return_train_score"warn"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.neural_network.multilayer_perceptron.MLPClassifier))(1)_scoringnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.neural_network.multilayer_perceptron.MLPClassifier))(1)_verbose0
sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.neural_network.multilayer_perceptron.MLPClassifier)(1)_memorynull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.9522 ± 0.0023
Per class
Cross-validation details (10-fold Crossvalidation)
0.8392 ± 0.0083
Per class
Cross-validation details (10-fold Crossvalidation)
0.6857 ± 0.0132
Cross-validation details (10-fold Crossvalidation)
42215.0495 ± 100.2381
Cross-validation details (10-fold Crossvalidation)
0.1294 ± 0.0052
Cross-validation details (10-fold Crossvalidation)
0.3313 ± 0
Cross-validation details (10-fold Crossvalidation)
67557
Per class
Cross-validation details (10-fold Crossvalidation)
0.8347 ± 0.0088
Per class
Cross-validation details (10-fold Crossvalidation)
0.8495 ± 0.0054
Cross-validation details (10-fold Crossvalidation)
1.2185
Cross-validation details (10-fold Crossvalidation)
0.8495 ± 0.0054
Per class
Cross-validation details (10-fold Crossvalidation)
0.3906 ± 0.0158
Cross-validation details (10-fold Crossvalidation)
0.407 ± 0
Cross-validation details (10-fold Crossvalidation)
0.2653 ± 0.0042
Cross-validation details (10-fold Crossvalidation)
0.6519 ± 0.0102
Cross-validation details (10-fold Crossvalidation)