Run
9197328

Run 9197328

Task 14954 (Supervised Classification) cylinder-bands Uploaded 27-04-2018 by Hilde Weerts
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.19.1. study_98
Issue #Downvotes for this reason By


Flow

sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeli ne.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hote ncoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn. feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble .forest.RandomForestClassifier))(1)Automatically created scikit-learn flow.
sklearn.preprocessing.data.OneHotEncoder(17)_categorical_features[0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 20, 34, 36]
sklearn.preprocessing.data.OneHotEncoder(17)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(17)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(17)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(17)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(11)_threshold0.0
sklearn.ensemble.forest.RandomForestClassifier(32)_bootstraptrue
sklearn.ensemble.forest.RandomForestClassifier(32)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(32)_criterion"gini"
sklearn.ensemble.forest.RandomForestClassifier(32)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(32)_max_features"auto"
sklearn.ensemble.forest.RandomForestClassifier(32)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(32)_min_impurity_decrease0.0
sklearn.ensemble.forest.RandomForestClassifier(32)_min_impurity_splitnull
sklearn.ensemble.forest.RandomForestClassifier(32)_min_samples_leaf1
sklearn.ensemble.forest.RandomForestClassifier(32)_min_samples_split2
sklearn.ensemble.forest.RandomForestClassifier(32)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(32)_n_estimators10
sklearn.ensemble.forest.RandomForestClassifier(32)_n_jobs1
sklearn.ensemble.forest.RandomForestClassifier(32)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(32)_random_state52524
sklearn.ensemble.forest.RandomForestClassifier(32)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(32)_warm_startfalse
sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier)(1)_memorynull
hyperimp.utils.preprocessing.ConditionalImputer(1)_axis0
hyperimp.utils.preprocessing.ConditionalImputer(1)_categorical_features[0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 20, 34, 36]
hyperimp.utils.preprocessing.ConditionalImputer(1)_copytrue
hyperimp.utils.preprocessing.ConditionalImputer(1)_fill_empty0
hyperimp.utils.preprocessing.ConditionalImputer(1)_missing_values"NaN"
hyperimp.utils.preprocessing.ConditionalImputer(1)_strategy"mean"
hyperimp.utils.preprocessing.ConditionalImputer(1)_strategy_nominal"most_frequent"
hyperimp.utils.preprocessing.ConditionalImputer(1)_verbose0
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_cv5
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_error_score"raise"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_fit_paramsnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_iidtrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_n_iter100
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_n_jobs-1
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_param_distributions{"clf__bootstrap": [true, false], "clf__criterion": ["gini", "entropy"], "clf__max_features": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "scipy.stats._continuous_distns.uniform_gen", "a": 0.0, "b": 1.0, "args": [], "kwds": {"loc": 0, "scale": 1}}}, "clf__min_samples_leaf": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "scipy.stats._discrete_distns.randint_gen", "a": 1, "b": 20, "args": [], "kwds": {"low": 1, "high": 21}}}, "clf__min_samples_split": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "scipy.stats._discrete_distns.randint_gen", "a": 2, "b": 20, "args": [], "kwds": {"low": 2, "high": 21}}}, "clf__n_estimators": [300], "clf__random_state": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "scipy.stats._discrete_distns.randint_gen", "a": 1, "b": 100000, "args": [], "kwds": {"low": 1, "high": 100001}}}}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_pre_dispatch"2*n_jobs"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_random_state607732
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_refittrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_return_train_score"warn"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_scoringnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier))(1)_verbose1

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

17 Evaluation measures

0.9169 ± 0.0438
Per class
Cross-validation details (10-fold Crossvalidation)
0.8463 ± 0.041
Per class
Cross-validation details (10-fold Crossvalidation)
0.6832 ± 0.0842
Cross-validation details (10-fold Crossvalidation)
233.6122 ± 3.5208
Cross-validation details (10-fold Crossvalidation)
0.2964 ± 0.0295
Cross-validation details (10-fold Crossvalidation)
0.4879 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
540
Per class
Cross-validation details (10-fold Crossvalidation)
0.8499 ± 0.0402
Per class
Cross-validation details (10-fold Crossvalidation)
0.8481 ± 0.0398
Cross-validation details (10-fold Crossvalidation)
0.9826
Cross-validation details (10-fold Crossvalidation)
0.8481 ± 0.0398
Per class
Cross-validation details (10-fold Crossvalidation)
0.6074 ± 0.0605
Cross-validation details (10-fold Crossvalidation)
0.4939 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
0.3545 ± 0.0313
Cross-validation details (10-fold Crossvalidation)
0.7178 ± 0.0632
Cross-validation details (10-fold Crossvalidation)