Run
9190610

Run 9190610

Task 167211 (Supervised Classification) Satellite Uploaded 20-04-2018 by Olof Morra
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Evaluation Engine Exception: Illegal combination of evaluation measure attributes (repeat, fold, sample): Measure(s): predictive_accuracy(0, 0, 0), usercpu_time_millis_testing(0, 0, 0), usercpu_time_millis(0, 0, 0), root_mean_squared_error(0, 0, 0), root_relative_squared_error(0, 0, 0), kappa(0, 0, 0), usercpu_time_millis_training(0, 0, 0), predictive_accuracy(0, 1, 0), usercpu_time_millis_testing(0, 1, 0), usercpu_time_millis(0, 1, 0), root_mean_squared_error(0, 1, 0), root_relative_squared_error(0, 1, 0), kappa(0, 1, 0), usercpu_time_millis_training(0, 1, 0), predictive_accuracy(0, 2, 0), usercpu_time_millis_testing(0, 2, 0), usercpu_time_millis(0, 2, 0), root_mean_squared_error(0, 2, 0), root_relative_squared_error(0, 2, 0), kappa(0, 2, 0), usercpu_time_millis_training(0, 2, 0), predictive_accuracy(0, 3, 0), usercpu_time_millis_testing(0, 3, 0), usercpu_time_millis(0, 3, 0), root_mean_squared_error(0, 3, 0), root_relative_squared_error(0, 3, 0), kappa(0, 3, 0), usercpu_time_millis_training(... (message cut-off due to excessive length)
Issue #Downvotes for this reason By


Flow

weka.MultiSearch(2)Weka implementation of MultiSearch
weka.MultiSearch(2)_ECC
weka.MultiSearch(2)_class-label1
weka.MultiSearch(2)_searchweka.core.setupgenerator.MathParameter -property KNN -min 1.0 -max 50.0 -step 1.0 -base 1.0 -expression I
weka.MultiSearch(2)_algorithmweka.classifiers.meta.multisearch.DefaultSearch -sample-size 100.0 -initial-folds 2 -subsequent-folds 10 -initial-test-set . -subsequent-test-set . -num-slots 1
weka.MultiSearch(2)_log-file/Users/olofmorra
weka.MultiSearch(2)_S1
weka.MultiSearch(2)_Wweka.classifiers.lazy.IBk

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

model
Model readable

A human-readable description of the model that was built.

model
Model serialized

A serialized description of the model that can be read by the tool that generated it.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

0 Evaluation measures