Run
9084892

Run 9084892

Task 29 (Supervised Classification) credit-approval Uploaded 14-04-2018 by Hilde Weerts
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Evaluation Engine Exception: Run description file not present.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.Condition alImputer2,hotencoding=sklearn.preprocessing.data.OneHotEncoder,scaling=skl earn.preprocessing.data.StandardScaler,variencethreshold=sklearn.feature_se lection.variance_threshold.VarianceThreshold,clf=sklearn.svm.classes.SVC)(1 )Automatically created scikit-learn flow.
sklearn.preprocessing.data.OneHotEncoder(17)_categorical_features[0, 3, 4, 5, 6, 8, 9, 11, 12]
sklearn.preprocessing.data.OneHotEncoder(17)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(17)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(17)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(17)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(11)_threshold0.0
sklearn.preprocessing.data.StandardScaler(5)_copytrue
sklearn.preprocessing.data.StandardScaler(5)_with_meanfalse
sklearn.preprocessing.data.StandardScaler(5)_with_stdtrue
sklearn.svm.classes.SVC(16)_C16.979104043035697
sklearn.svm.classes.SVC(16)_cache_size200
sklearn.svm.classes.SVC(16)_class_weightnull
sklearn.svm.classes.SVC(16)_coef00.038663598149388245
sklearn.svm.classes.SVC(16)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(16)_degree3
sklearn.svm.classes.SVC(16)_gamma0.2788180858725163
sklearn.svm.classes.SVC(16)_kernel"rbf"
sklearn.svm.classes.SVC(16)_max_iter-1
sklearn.svm.classes.SVC(16)_probabilityfalse
sklearn.svm.classes.SVC(16)_random_state71456
sklearn.svm.classes.SVC(16)_shrinkingtrue
sklearn.svm.classes.SVC(16)_tol0.022902407785691473
sklearn.svm.classes.SVC(16)_verbosefalse
hyperimp.utils.preprocessing.ConditionalImputer2(1)_axis0
hyperimp.utils.preprocessing.ConditionalImputer2(1)_categorical_features[0, 3, 4, 5, 6, 8, 9, 11, 12]
hyperimp.utils.preprocessing.ConditionalImputer2(1)_copytrue
hyperimp.utils.preprocessing.ConditionalImputer2(1)_fill_empty0
hyperimp.utils.preprocessing.ConditionalImputer2(1)_missing_values"NaN"
hyperimp.utils.preprocessing.ConditionalImputer2(1)_strategy"mean"
hyperimp.utils.preprocessing.ConditionalImputer2(1)_strategy_nominal"most_frequent"
hyperimp.utils.preprocessing.ConditionalImputer2(1)_verbose0
sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer2,hotencoding=sklearn.preprocessing.data.OneHotEncoder,scaling=sklearn.preprocessing.data.StandardScaler,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.svm.classes.SVC)(1)_memorynull

Result files

0 Evaluation measures