Run
9071733

Run 9071733

Task 146817 (Supervised Classification) steel-plates-fault Uploaded 14-04-2018 by Hilde Weerts
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Evaluation Engine Exception: Run description file not present.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.Condition alImputer2,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethr eshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=s klearn.ensemble.forest.RandomForestClassifier)(1)Automatically created scikit-learn flow.
sklearn.preprocessing.data.OneHotEncoder(17)_categorical_features[]
sklearn.preprocessing.data.OneHotEncoder(17)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(17)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(17)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(17)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(11)_threshold0.0
sklearn.ensemble.forest.RandomForestClassifier(32)_bootstraptrue
sklearn.ensemble.forest.RandomForestClassifier(32)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(32)_criterion"gini"
sklearn.ensemble.forest.RandomForestClassifier(32)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(32)_max_features0.9762123824405095
sklearn.ensemble.forest.RandomForestClassifier(32)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(32)_min_impurity_decrease0.0
sklearn.ensemble.forest.RandomForestClassifier(32)_min_impurity_splitnull
sklearn.ensemble.forest.RandomForestClassifier(32)_min_samples_leaf2
sklearn.ensemble.forest.RandomForestClassifier(32)_min_samples_split16
sklearn.ensemble.forest.RandomForestClassifier(32)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(32)_n_estimators300
sklearn.ensemble.forest.RandomForestClassifier(32)_n_jobs1
sklearn.ensemble.forest.RandomForestClassifier(32)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(32)_random_state30836
sklearn.ensemble.forest.RandomForestClassifier(32)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(32)_warm_startfalse
sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer2,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier)(1)_memorynull
hyperimp.utils.preprocessing.ConditionalImputer2(1)_axis0
hyperimp.utils.preprocessing.ConditionalImputer2(1)_categorical_features[]
hyperimp.utils.preprocessing.ConditionalImputer2(1)_copytrue
hyperimp.utils.preprocessing.ConditionalImputer2(1)_fill_empty0
hyperimp.utils.preprocessing.ConditionalImputer2(1)_missing_values"NaN"
hyperimp.utils.preprocessing.ConditionalImputer2(1)_strategy"mean"
hyperimp.utils.preprocessing.ConditionalImputer2(1)_strategy_nominal"most_frequent"
hyperimp.utils.preprocessing.ConditionalImputer2(1)_verbose0

Result files

0 Evaluation measures