Run
9042164

Run 9042164

Task 9950 (Supervised Classification) micro-mass Uploaded 10-04-2018 by Hilde Weerts
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.19.1. study_98
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.Condition alImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethre shold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sk learn.ensemble.forest.RandomForestClassifier)(1)Automatically created scikit-learn flow.
sklearn.preprocessing.data.OneHotEncoder(17)_categorical_features[]
sklearn.preprocessing.data.OneHotEncoder(17)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(17)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(17)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(17)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(11)_threshold0.0
sklearn.ensemble.forest.RandomForestClassifier(32)_bootstraptrue
sklearn.ensemble.forest.RandomForestClassifier(32)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(32)_criterion"entropy"
sklearn.ensemble.forest.RandomForestClassifier(32)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(32)_max_features0.8585510807190392
sklearn.ensemble.forest.RandomForestClassifier(32)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(32)_min_impurity_decrease0.0
sklearn.ensemble.forest.RandomForestClassifier(32)_min_impurity_splitnull
sklearn.ensemble.forest.RandomForestClassifier(32)_min_samples_leaf12
sklearn.ensemble.forest.RandomForestClassifier(32)_min_samples_split2
sklearn.ensemble.forest.RandomForestClassifier(32)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(32)_n_estimators500
sklearn.ensemble.forest.RandomForestClassifier(32)_n_jobs1
sklearn.ensemble.forest.RandomForestClassifier(32)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(32)_random_state1
sklearn.ensemble.forest.RandomForestClassifier(32)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(32)_warm_startfalse
sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier)(1)_memorynull
hyperimp.utils.preprocessing.ConditionalImputer(1)_axis0
hyperimp.utils.preprocessing.ConditionalImputer(1)_categorical_features[]
hyperimp.utils.preprocessing.ConditionalImputer(1)_copytrue
hyperimp.utils.preprocessing.ConditionalImputer(1)_fill_empty0
hyperimp.utils.preprocessing.ConditionalImputer(1)_missing_values"NaN"
hyperimp.utils.preprocessing.ConditionalImputer(1)_strategy"mean"
hyperimp.utils.preprocessing.ConditionalImputer(1)_strategy_nominal"most_frequent"
hyperimp.utils.preprocessing.ConditionalImputer(1)_verbose0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

15 Evaluation measures

0.9851 ± 0.0071
Per class
Cross-validation details (10-fold Crossvalidation)
0.812 ± 0.0487
Cross-validation details (10-fold Crossvalidation)
445.422 ± 1.85
Cross-validation details (10-fold Crossvalidation)
0.0382 ± 0.0034
Cross-validation details (10-fold Crossvalidation)
0.0941 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
571
Per class
Cross-validation details (10-fold Crossvalidation)
0.8231 ± 0.0458
Cross-validation details (10-fold Crossvalidation)
4.208
Cross-validation details (10-fold Crossvalidation)
0.8231 ± 0.0458
Per class
Cross-validation details (10-fold Crossvalidation)
0.4058 ± 0.0357
Cross-validation details (10-fold Crossvalidation)
0.2169 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.1222 ± 0.0101
Cross-validation details (10-fold Crossvalidation)
0.5633 ± 0.0464
Cross-validation details (10-fold Crossvalidation)