Run
OpenML
Help
Sign in
×
Sign in
No account? Join OpenML
Forgot password
×
JavaScript is required to properly view the contents of this page!
OpenML
Explore
Data
Task
Flow
Run
Study
Task type
Measure
People
Help
Blog
Contact
Please cite us
9022622
JSON
XML
RDF
Run 9022622
Task 146817 (Supervised Classification)
steel-plates-fault
Uploaded 10-04-2018 by
Hilde Weerts
0 likes
downloaded by 0 people
0 issues
0 downvotes
, 0 total downloads
Evaluation Engine Exception: Run description file not present.
Add tag
Issue
#Downvotes for this reason
By
Flow
sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.Condition alImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,scaling=skle arn.preprocessing.data.StandardScaler,variencethreshold=sklearn.feature_sel ection.variance_threshold.VarianceThreshold,clf=sklearn.svm.classes.SVC)(1)
Automatically created scikit-learn flow.
sklearn.preprocessing.data.OneHotEncoder(17)_categorical_features
[]
sklearn.preprocessing.data.OneHotEncoder(17)_dtype
{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(17)_handle_unknown
"ignore"
sklearn.preprocessing.data.OneHotEncoder(17)_n_values
"auto"
sklearn.preprocessing.data.OneHotEncoder(17)_sparse
true
sklearn.feature_selection.variance_threshold.VarianceThreshold(11)_threshold
0.0
sklearn.preprocessing.data.StandardScaler(5)_copy
true
sklearn.preprocessing.data.StandardScaler(5)_with_mean
false
sklearn.preprocessing.data.StandardScaler(5)_with_std
true
sklearn.svm.classes.SVC(16)_C
1.8541597224712945
sklearn.svm.classes.SVC(16)_cache_size
200
sklearn.svm.classes.SVC(16)_class_weight
null
sklearn.svm.classes.SVC(16)_coef0
0.29453827635383545
sklearn.svm.classes.SVC(16)_decision_function_shape
"ovr"
sklearn.svm.classes.SVC(16)_degree
3
sklearn.svm.classes.SVC(16)_gamma
0.001203697820064023
sklearn.svm.classes.SVC(16)_kernel
"rbf"
sklearn.svm.classes.SVC(16)_max_iter
-1
sklearn.svm.classes.SVC(16)_probability
false
sklearn.svm.classes.SVC(16)_random_state
1
sklearn.svm.classes.SVC(16)_shrinking
false
sklearn.svm.classes.SVC(16)_tol
0.00015071382964347956
sklearn.svm.classes.SVC(16)_verbose
false
hyperimp.utils.preprocessing.ConditionalImputer(1)_axis
0
hyperimp.utils.preprocessing.ConditionalImputer(1)_categorical_features
[]
hyperimp.utils.preprocessing.ConditionalImputer(1)_copy
true
hyperimp.utils.preprocessing.ConditionalImputer(1)_fill_empty
0
hyperimp.utils.preprocessing.ConditionalImputer(1)_missing_values
"NaN"
hyperimp.utils.preprocessing.ConditionalImputer(1)_strategy
"mean"
hyperimp.utils.preprocessing.ConditionalImputer(1)_strategy_nominal
"most_frequent"
hyperimp.utils.preprocessing.ConditionalImputer(1)_verbose
0
sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,scaling=sklearn.preprocessing.data.StandardScaler,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.svm.classes.SVC)(1)_memory
null
Result files
0 Evaluation measures