sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.Condition
alImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,scaling=skle
arn.preprocessing.data.StandardScaler,variencethreshold=sklearn.feature_sel
ection.variance_threshold.VarianceThreshold,clf=sklearn.svm.classes.SVC)(1) | Automatically created scikit-learn flow. |
sklearn.preprocessing.data.OneHotEncoder(17)_categorical_features | [0, 3, 4, 5, 7, 8, 10, 11] |
sklearn.preprocessing.data.OneHotEncoder(17)_dtype | {"oml-python:serialized_object": "type", "value": "np.float64"} |
sklearn.preprocessing.data.OneHotEncoder(17)_handle_unknown | "ignore" |
sklearn.preprocessing.data.OneHotEncoder(17)_n_values | "auto" |
sklearn.preprocessing.data.OneHotEncoder(17)_sparse | true |
sklearn.feature_selection.variance_threshold.VarianceThreshold(11)_threshold | 0.0 |
sklearn.preprocessing.data.StandardScaler(5)_copy | true |
sklearn.preprocessing.data.StandardScaler(5)_with_mean | false |
sklearn.preprocessing.data.StandardScaler(5)_with_std | true |
sklearn.svm.classes.SVC(16)_C | 0.23238783861910547 |
sklearn.svm.classes.SVC(16)_cache_size | 200 |
sklearn.svm.classes.SVC(16)_class_weight | null |
sklearn.svm.classes.SVC(16)_coef0 | 0.144730323816896 |
sklearn.svm.classes.SVC(16)_decision_function_shape | "ovr" |
sklearn.svm.classes.SVC(16)_degree | 3 |
sklearn.svm.classes.SVC(16)_gamma | 0.00018568511995755845 |
sklearn.svm.classes.SVC(16)_kernel | "rbf" |
sklearn.svm.classes.SVC(16)_max_iter | -1 |
sklearn.svm.classes.SVC(16)_probability | false |
sklearn.svm.classes.SVC(16)_random_state | 1 |
sklearn.svm.classes.SVC(16)_shrinking | true |
sklearn.svm.classes.SVC(16)_tol | 3.792462500929138e-05 |
sklearn.svm.classes.SVC(16)_verbose | false |
hyperimp.utils.preprocessing.ConditionalImputer(1)_axis | 0 |
hyperimp.utils.preprocessing.ConditionalImputer(1)_categorical_features | [0, 3, 4, 5, 7, 8, 10, 11] |
hyperimp.utils.preprocessing.ConditionalImputer(1)_copy | true |
hyperimp.utils.preprocessing.ConditionalImputer(1)_fill_empty | 0 |
hyperimp.utils.preprocessing.ConditionalImputer(1)_missing_values | "NaN" |
hyperimp.utils.preprocessing.ConditionalImputer(1)_strategy | "mean" |
hyperimp.utils.preprocessing.ConditionalImputer(1)_strategy_nominal | "most_frequent" |
hyperimp.utils.preprocessing.ConditionalImputer(1)_verbose | 0 |
sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,scaling=sklearn.preprocessing.data.StandardScaler,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.svm.classes.SVC)(1)_memory | null |