Run
9012009

Run 9012009

Task 146817 (Supervised Classification) steel-plates-fault Uploaded 10-04-2018 by Hilde Weerts
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.19.1. study_98
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.Condition alImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,scaling=skle arn.preprocessing.data.StandardScaler,variencethreshold=sklearn.feature_sel ection.variance_threshold.VarianceThreshold,clf=sklearn.svm.classes.SVC)(1)Automatically created scikit-learn flow.
sklearn.preprocessing.data.OneHotEncoder(17)_categorical_features[]
sklearn.preprocessing.data.OneHotEncoder(17)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(17)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(17)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(17)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(11)_threshold0.0
sklearn.preprocessing.data.StandardScaler(5)_copytrue
sklearn.preprocessing.data.StandardScaler(5)_with_meanfalse
sklearn.preprocessing.data.StandardScaler(5)_with_stdtrue
sklearn.svm.classes.SVC(16)_C3400.5769920091757
sklearn.svm.classes.SVC(16)_cache_size200
sklearn.svm.classes.SVC(16)_class_weightnull
sklearn.svm.classes.SVC(16)_coef00.8365781920348658
sklearn.svm.classes.SVC(16)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(16)_degree3
sklearn.svm.classes.SVC(16)_gamma1.0413156522429967
sklearn.svm.classes.SVC(16)_kernel"rbf"
sklearn.svm.classes.SVC(16)_max_iter-1
sklearn.svm.classes.SVC(16)_probabilityfalse
sklearn.svm.classes.SVC(16)_random_state1
sklearn.svm.classes.SVC(16)_shrinkingtrue
sklearn.svm.classes.SVC(16)_tol0.022197944853481415
sklearn.svm.classes.SVC(16)_verbosefalse
hyperimp.utils.preprocessing.ConditionalImputer(1)_axis0
hyperimp.utils.preprocessing.ConditionalImputer(1)_categorical_features[]
hyperimp.utils.preprocessing.ConditionalImputer(1)_copytrue
hyperimp.utils.preprocessing.ConditionalImputer(1)_fill_empty0
hyperimp.utils.preprocessing.ConditionalImputer(1)_missing_values"NaN"
hyperimp.utils.preprocessing.ConditionalImputer(1)_strategy"mean"
hyperimp.utils.preprocessing.ConditionalImputer(1)_strategy_nominal"most_frequent"
hyperimp.utils.preprocessing.ConditionalImputer(1)_verbose0
sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,scaling=sklearn.preprocessing.data.StandardScaler,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.svm.classes.SVC)(1)_memorynull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.735 ± 0.0351
Per class
Cross-validation details (10-fold Crossvalidation)
0.6238 ± 0.0512
Per class
Cross-validation details (10-fold Crossvalidation)
0.5077 ± 0.0705
Cross-validation details (10-fold Crossvalidation)
1048.5018 ± 11.5756
Cross-validation details (10-fold Crossvalidation)
0.101 ± 0.0137
Cross-validation details (10-fold Crossvalidation)
0.2223 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
1941
Per class
Cross-validation details (10-fold Crossvalidation)
0.7371 ± 0.0503
Per class
Cross-validation details (10-fold Crossvalidation)
0.6466 ± 0.0478
Cross-validation details (10-fold Crossvalidation)
2.4138
Cross-validation details (10-fold Crossvalidation)
0.6466 ± 0.0478
Per class
Cross-validation details (10-fold Crossvalidation)
0.4542 ± 0.0612
Cross-validation details (10-fold Crossvalidation)
0.3334 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.3178 ± 0.0215
Cross-validation details (10-fold Crossvalidation)
0.9532 ± 0.0642
Cross-validation details (10-fold Crossvalidation)