Run
8850403

Run 8850403

Task 9967 (Supervised Classification) steel-plates-fault Uploaded 27-01-2018 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-pimp openml-python Sklearn_0.18.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.Conditiona lImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,scaling=sklea rn.preprocessing.data.StandardScaler,variencethreshold=sklearn.feature_sele ction.variance_threshold.VarianceThreshold,classifier=sklearn.svm.classes.S VC)(1)Automatically created scikit-learn flow.
openmlstudy14.preprocessing.ConditionalImputer(6)_axis0
openmlstudy14.preprocessing.ConditionalImputer(6)_categorical_features[]
openmlstudy14.preprocessing.ConditionalImputer(6)_copytrue
openmlstudy14.preprocessing.ConditionalImputer(6)_fill_empty0
openmlstudy14.preprocessing.ConditionalImputer(6)_missing_values"NaN"
openmlstudy14.preprocessing.ConditionalImputer(6)_strategy"mean"
openmlstudy14.preprocessing.ConditionalImputer(6)_strategy_nominal"most_frequent"
openmlstudy14.preprocessing.ConditionalImputer(6)_verbose0
sklearn.preprocessing.data.OneHotEncoder(18)_categorical_features[]
sklearn.preprocessing.data.OneHotEncoder(18)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(18)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(18)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(18)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(12)_threshold0.0
sklearn.preprocessing.data.StandardScaler(6)_copytrue
sklearn.preprocessing.data.StandardScaler(6)_with_meanfalse
sklearn.preprocessing.data.StandardScaler(6)_with_stdtrue
sklearn.svm.classes.SVC(17)_C0.4583884470146922
sklearn.svm.classes.SVC(17)_cache_size200
sklearn.svm.classes.SVC(17)_class_weightnull
sklearn.svm.classes.SVC(17)_coef00.7537178897553916
sklearn.svm.classes.SVC(17)_decision_function_shapenull
sklearn.svm.classes.SVC(17)_degree5
sklearn.svm.classes.SVC(17)_gamma0.0004638026747436166
sklearn.svm.classes.SVC(17)_kernel"sigmoid"
sklearn.svm.classes.SVC(17)_max_iter-1
sklearn.svm.classes.SVC(17)_probabilitytrue
sklearn.svm.classes.SVC(17)_random_state711
sklearn.svm.classes.SVC(17)_shrinkingfalse
sklearn.svm.classes.SVC(17)_tol0.011945948700359138
sklearn.svm.classes.SVC(17)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.999 ± 0.0013
Per class
Cross-validation details (10-fold Crossvalidation)
0.9805 ± 0.0138
Per class
Cross-validation details (10-fold Crossvalidation)
0.9573 ± 0.0301
Cross-validation details (10-fold Crossvalidation)
1847.4832 ± 5.8365
Cross-validation details (10-fold Crossvalidation)
0.0213 ± 0.0123
Cross-validation details (10-fold Crossvalidation)
0.4531 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
1941
Per class
Cross-validation details (10-fold Crossvalidation)
0.9813 ± 0.0129
Per class
Cross-validation details (10-fold Crossvalidation)
0.9804 ± 0.0139
Cross-validation details (10-fold Crossvalidation)
0.9313
Cross-validation details (10-fold Crossvalidation)
0.9804 ± 0.0139
Per class
Cross-validation details (10-fold Crossvalidation)
0.047 ± 0.0272
Cross-validation details (10-fold Crossvalidation)
0.4759 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
0.1268 ± 0.055
Cross-validation details (10-fold Crossvalidation)
0.2664 ± 0.1156
Cross-validation details (10-fold Crossvalidation)