Run
8821900

Run 8821900

Task 3889 (Supervised Classification) sylva_agnostic Uploaded 24-01-2018 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-pimp openml-python Sklearn_0.18.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.Conditiona lImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,scaling=sklea rn.preprocessing.data.StandardScaler,variencethreshold=sklearn.feature_sele ction.variance_threshold.VarianceThreshold,classifier=sklearn.svm.classes.S VC)(1)Automatically created scikit-learn flow.
openmlstudy14.preprocessing.ConditionalImputer(6)_axis0
openmlstudy14.preprocessing.ConditionalImputer(6)_categorical_features[]
openmlstudy14.preprocessing.ConditionalImputer(6)_copytrue
openmlstudy14.preprocessing.ConditionalImputer(6)_fill_empty0
openmlstudy14.preprocessing.ConditionalImputer(6)_missing_values"NaN"
openmlstudy14.preprocessing.ConditionalImputer(6)_strategy"median"
openmlstudy14.preprocessing.ConditionalImputer(6)_strategy_nominal"most_frequent"
openmlstudy14.preprocessing.ConditionalImputer(6)_verbose0
sklearn.preprocessing.data.OneHotEncoder(18)_categorical_features[]
sklearn.preprocessing.data.OneHotEncoder(18)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(18)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(18)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(18)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(12)_threshold0.0
sklearn.preprocessing.data.StandardScaler(6)_copytrue
sklearn.preprocessing.data.StandardScaler(6)_with_meanfalse
sklearn.preprocessing.data.StandardScaler(6)_with_stdtrue
sklearn.svm.classes.SVC(17)_C0.05607470190370231
sklearn.svm.classes.SVC(17)_cache_size200
sklearn.svm.classes.SVC(17)_class_weightnull
sklearn.svm.classes.SVC(17)_coef0-0.5014697563527546
sklearn.svm.classes.SVC(17)_decision_function_shapenull
sklearn.svm.classes.SVC(17)_degree4
sklearn.svm.classes.SVC(17)_gamma0.029769198890244906
sklearn.svm.classes.SVC(17)_kernel"poly"
sklearn.svm.classes.SVC(17)_max_iter-1
sklearn.svm.classes.SVC(17)_probabilitytrue
sklearn.svm.classes.SVC(17)_random_state25849
sklearn.svm.classes.SVC(17)_shrinkingfalse
sklearn.svm.classes.SVC(17)_tol4.094824965254582e-05
sklearn.svm.classes.SVC(17)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.9986 ± 0.0008
Per class
Cross-validation details (10-fold Crossvalidation)
0.9926 ± 0.0022
Per class
Cross-validation details (10-fold Crossvalidation)
0.9356 ± 0.019
Cross-validation details (10-fold Crossvalidation)
12602.3624 ± 34.3531
Cross-validation details (10-fold Crossvalidation)
0.0113 ± 0.0018
Cross-validation details (10-fold Crossvalidation)
0.1156 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
14395
Per class
Cross-validation details (10-fold Crossvalidation)
0.9926 ± 0.0022
Per class
Cross-validation details (10-fold Crossvalidation)
0.9926 ± 0.0022
Cross-validation details (10-fold Crossvalidation)
0.3338
Cross-validation details (10-fold Crossvalidation)
0.9926 ± 0.0022
Per class
Cross-validation details (10-fold Crossvalidation)
0.0977 ± 0.0157
Cross-validation details (10-fold Crossvalidation)
0.2403 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.0745 ± 0.011
Cross-validation details (10-fold Crossvalidation)
0.3099 ± 0.046
Cross-validation details (10-fold Crossvalidation)