Run
8805080

Run 8805080

Task 9967 (Supervised Classification) steel-plates-fault Uploaded 22-01-2018 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-pimp openml-python Sklearn_0.18.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.Conditiona lImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,scaling=sklea rn.preprocessing.data.StandardScaler,variencethreshold=sklearn.feature_sele ction.variance_threshold.VarianceThreshold,classifier=sklearn.svm.classes.S VC)(1)Automatically created scikit-learn flow.
openmlstudy14.preprocessing.ConditionalImputer(6)_axis0
openmlstudy14.preprocessing.ConditionalImputer(6)_categorical_features[]
openmlstudy14.preprocessing.ConditionalImputer(6)_copytrue
openmlstudy14.preprocessing.ConditionalImputer(6)_fill_empty0
openmlstudy14.preprocessing.ConditionalImputer(6)_missing_values"NaN"
openmlstudy14.preprocessing.ConditionalImputer(6)_strategy"mean"
openmlstudy14.preprocessing.ConditionalImputer(6)_strategy_nominal"most_frequent"
openmlstudy14.preprocessing.ConditionalImputer(6)_verbose0
sklearn.preprocessing.data.OneHotEncoder(18)_categorical_features[]
sklearn.preprocessing.data.OneHotEncoder(18)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(18)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(18)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(18)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(12)_threshold0.0
sklearn.preprocessing.data.StandardScaler(6)_copytrue
sklearn.preprocessing.data.StandardScaler(6)_with_meanfalse
sklearn.preprocessing.data.StandardScaler(6)_with_stdtrue
sklearn.svm.classes.SVC(17)_C275.18521327195356
sklearn.svm.classes.SVC(17)_cache_size200
sklearn.svm.classes.SVC(17)_class_weightnull
sklearn.svm.classes.SVC(17)_coef00.40228243333598757
sklearn.svm.classes.SVC(17)_decision_function_shapenull
sklearn.svm.classes.SVC(17)_degree1
sklearn.svm.classes.SVC(17)_gamma0.0010964759510884957
sklearn.svm.classes.SVC(17)_kernel"sigmoid"
sklearn.svm.classes.SVC(17)_max_iter-1
sklearn.svm.classes.SVC(17)_probabilitytrue
sklearn.svm.classes.SVC(17)_random_state21349
sklearn.svm.classes.SVC(17)_shrinkingfalse
sklearn.svm.classes.SVC(17)_tol0.009051504576284066
sklearn.svm.classes.SVC(17)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.9964 ± 0.0065
Per class
Cross-validation details (10-fold Crossvalidation)
0.9954 ± 0.0066
Per class
Cross-validation details (10-fold Crossvalidation)
0.9897 ± 0.0147
Cross-validation details (10-fold Crossvalidation)
1905.7984 ± 2.5812
Cross-validation details (10-fold Crossvalidation)
0.0092 ± 0.0064
Cross-validation details (10-fold Crossvalidation)
0.4531 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
1941
Per class
Cross-validation details (10-fold Crossvalidation)
0.9954 ± 0.0065
Per class
Cross-validation details (10-fold Crossvalidation)
0.9954 ± 0.0066
Cross-validation details (10-fold Crossvalidation)
0.9313
Cross-validation details (10-fold Crossvalidation)
0.9954 ± 0.0066
Per class
Cross-validation details (10-fold Crossvalidation)
0.0203 ± 0.0141
Cross-validation details (10-fold Crossvalidation)
0.4759 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
0.0651 ± 0.0446
Cross-validation details (10-fold Crossvalidation)
0.1368 ± 0.0937
Cross-validation details (10-fold Crossvalidation)