Run
8784075

Run 8784075

Task 3954 (Supervised Classification) MagicTelescope Uploaded 10-01-2018 by Vishal Chouskey
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-pimp openml-python Sklearn_0.18.2.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.Conditiona lImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethres hold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classif ier=sklearn.ensemble.forest.RandomForestClassifier)(4)Automatically created scikit-learn flow.
sklearn.preprocessing.data.OneHotEncoder(14)_categorical_features[]
sklearn.preprocessing.data.OneHotEncoder(14)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(14)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(14)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(14)_sparsetrue
sklearn.ensemble.forest.RandomForestClassifier(29)_bootstrapfalse
sklearn.ensemble.forest.RandomForestClassifier(29)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(29)_criterion"gini"
sklearn.ensemble.forest.RandomForestClassifier(29)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(29)_max_features0.37472804385546565
sklearn.ensemble.forest.RandomForestClassifier(29)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(29)_min_impurity_split1e-07
sklearn.ensemble.forest.RandomForestClassifier(29)_min_samples_leaf3
sklearn.ensemble.forest.RandomForestClassifier(29)_min_samples_split7
sklearn.ensemble.forest.RandomForestClassifier(29)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(29)_n_estimators10
sklearn.ensemble.forest.RandomForestClassifier(29)_n_jobs1
sklearn.ensemble.forest.RandomForestClassifier(29)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(29)_random_state15182
sklearn.ensemble.forest.RandomForestClassifier(29)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(29)_warm_startfalse
sklearn.feature_selection.variance_threshold.VarianceThreshold(9)_threshold0.0
openmlstudy14.preprocessing.ConditionalImputer(6)_axis0
openmlstudy14.preprocessing.ConditionalImputer(6)_categorical_features[]
openmlstudy14.preprocessing.ConditionalImputer(6)_copytrue
openmlstudy14.preprocessing.ConditionalImputer(6)_fill_empty0
openmlstudy14.preprocessing.ConditionalImputer(6)_missing_values"NaN"
openmlstudy14.preprocessing.ConditionalImputer(6)_strategy"mean"
openmlstudy14.preprocessing.ConditionalImputer(6)_strategy_nominal"most_frequent"
openmlstudy14.preprocessing.ConditionalImputer(6)_verbose0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.926 ± 0.0071
Per class
Cross-validation details (10-fold Crossvalidation)
0.8736 ± 0.0067
Per class
Cross-validation details (10-fold Crossvalidation)
0.7196 ± 0.0151
Cross-validation details (10-fold Crossvalidation)
11467.36 ± 19.1944
Cross-validation details (10-fold Crossvalidation)
0.1888 ± 0.0041
Cross-validation details (10-fold Crossvalidation)
0.456 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
19020
Per class
Cross-validation details (10-fold Crossvalidation)
0.8748 ± 0.0066
Per class
Cross-validation details (10-fold Crossvalidation)
0.8754 ± 0.0065
Cross-validation details (10-fold Crossvalidation)
0.9355
Cross-validation details (10-fold Crossvalidation)
0.8754 ± 0.0065
Per class
Cross-validation details (10-fold Crossvalidation)
0.4141 ± 0.009
Cross-validation details (10-fold Crossvalidation)
0.4775 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.3072 ± 0.0062
Cross-validation details (10-fold Crossvalidation)
0.6433 ± 0.0129
Cross-validation details (10-fold Crossvalidation)