Run
8784071

Run 8784071

Task 11 (Supervised Classification) balance-scale Uploaded 10-01-2018 by Vishal Chouskey
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-pimp openml-python Sklearn_0.18.2.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.Conditiona lImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethres hold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classif ier=sklearn.ensemble.forest.RandomForestClassifier)(4)Automatically created scikit-learn flow.
sklearn.preprocessing.data.OneHotEncoder(14)_categorical_features[]
sklearn.preprocessing.data.OneHotEncoder(14)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(14)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(14)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(14)_sparsetrue
sklearn.ensemble.forest.RandomForestClassifier(29)_bootstraptrue
sklearn.ensemble.forest.RandomForestClassifier(29)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(29)_criterion"entropy"
sklearn.ensemble.forest.RandomForestClassifier(29)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(29)_max_features0.5594522082031123
sklearn.ensemble.forest.RandomForestClassifier(29)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(29)_min_impurity_split1e-07
sklearn.ensemble.forest.RandomForestClassifier(29)_min_samples_leaf9
sklearn.ensemble.forest.RandomForestClassifier(29)_min_samples_split18
sklearn.ensemble.forest.RandomForestClassifier(29)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(29)_n_estimators10
sklearn.ensemble.forest.RandomForestClassifier(29)_n_jobs1
sklearn.ensemble.forest.RandomForestClassifier(29)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(29)_random_state28754
sklearn.ensemble.forest.RandomForestClassifier(29)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(29)_warm_startfalse
sklearn.feature_selection.variance_threshold.VarianceThreshold(9)_threshold0.0
openmlstudy14.preprocessing.ConditionalImputer(6)_axis0
openmlstudy14.preprocessing.ConditionalImputer(6)_categorical_features[]
openmlstudy14.preprocessing.ConditionalImputer(6)_copytrue
openmlstudy14.preprocessing.ConditionalImputer(6)_fill_empty0
openmlstudy14.preprocessing.ConditionalImputer(6)_missing_values"NaN"
openmlstudy14.preprocessing.ConditionalImputer(6)_strategy"most_frequent"
openmlstudy14.preprocessing.ConditionalImputer(6)_strategy_nominal"most_frequent"
openmlstudy14.preprocessing.ConditionalImputer(6)_verbose0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

15 Evaluation measures

0.944 ± 0.0154
Per class
Cross-validation details (10-fold Crossvalidation)
0.7478 ± 0.0402
Cross-validation details (10-fold Crossvalidation)
301.2369 ± 3.1199
Cross-validation details (10-fold Crossvalidation)
0.199 ± 0.0219
Cross-validation details (10-fold Crossvalidation)
0.3798 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
625
Per class
Cross-validation details (10-fold Crossvalidation)
0.864 ± 0.0218
Cross-validation details (10-fold Crossvalidation)
1.3212
Cross-validation details (10-fold Crossvalidation)
0.864 ± 0.0218
Per class
Cross-validation details (10-fold Crossvalidation)
0.5239 ± 0.0576
Cross-validation details (10-fold Crossvalidation)
0.4356 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.2854 ± 0.0167
Cross-validation details (10-fold Crossvalidation)
0.6551 ± 0.0381
Cross-validation details (10-fold Crossvalidation)