Run
OpenML
Help
Sign in
×
Sign in
No account? Join OpenML
Forgot password
×
JavaScript is required to properly view the contents of this page!
OpenML
Explore
Data
Task
Flow
Run
Study
Task type
Measure
People
Help
Blog
Contact
Please cite us
8701395
JSON
XML
RDF
Run 8701395
Task 9967 (Supervised Classification)
steel-plates-fault
Uploaded 27-12-2017 by
Jan van Rijn
0 likes
downloaded by 0 people
0 issues
0 downvotes
, 0 total downloads
Evaluation Engine Exception: Run description file not present.
Add tag
Issue
#Downvotes for this reason
By
Flow
sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.Conditiona lImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,scaling=sklea rn.preprocessing.data.StandardScaler,variencethreshold=sklearn.feature_sele ction.variance_threshold.VarianceThreshold,classifier=sklearn.svm.classes.S VC)(1)
Automatically created scikit-learn flow.
openmlstudy14.preprocessing.ConditionalImputer(6)_axis
0
openmlstudy14.preprocessing.ConditionalImputer(6)_categorical_features
[]
openmlstudy14.preprocessing.ConditionalImputer(6)_copy
true
openmlstudy14.preprocessing.ConditionalImputer(6)_fill_empty
0
openmlstudy14.preprocessing.ConditionalImputer(6)_missing_values
"NaN"
openmlstudy14.preprocessing.ConditionalImputer(6)_strategy
"most_frequent"
openmlstudy14.preprocessing.ConditionalImputer(6)_strategy_nominal
"most_frequent"
openmlstudy14.preprocessing.ConditionalImputer(6)_verbose
0
sklearn.preprocessing.data.OneHotEncoder(18)_categorical_features
[]
sklearn.preprocessing.data.OneHotEncoder(18)_dtype
{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(18)_handle_unknown
"ignore"
sklearn.preprocessing.data.OneHotEncoder(18)_n_values
"auto"
sklearn.preprocessing.data.OneHotEncoder(18)_sparse
true
sklearn.feature_selection.variance_threshold.VarianceThreshold(12)_threshold
0.0
sklearn.preprocessing.data.StandardScaler(6)_copy
true
sklearn.preprocessing.data.StandardScaler(6)_with_mean
false
sklearn.preprocessing.data.StandardScaler(6)_with_std
true
sklearn.svm.classes.SVC(17)_C
0.40021829015596283
sklearn.svm.classes.SVC(17)_cache_size
200
sklearn.svm.classes.SVC(17)_class_weight
null
sklearn.svm.classes.SVC(17)_coef0
0.13772377154880222
sklearn.svm.classes.SVC(17)_decision_function_shape
null
sklearn.svm.classes.SVC(17)_degree
4
sklearn.svm.classes.SVC(17)_gamma
0.010236435823361405
sklearn.svm.classes.SVC(17)_kernel
"poly"
sklearn.svm.classes.SVC(17)_max_iter
-1
sklearn.svm.classes.SVC(17)_probability
true
sklearn.svm.classes.SVC(17)_random_state
6805
sklearn.svm.classes.SVC(17)_shrinking
true
sklearn.svm.classes.SVC(17)_tol
0.0032928066005876635
sklearn.svm.classes.SVC(17)_verbose
false
Result files
0 Evaluation measures