Run
8697404

Run 8697404

Task 9950 (Supervised Classification) micro-mass Uploaded 27-12-2017 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-pimp openml-python Sklearn_0.18.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.Conditiona lImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,scaling=sklea rn.preprocessing.data.StandardScaler,variencethreshold=sklearn.feature_sele ction.variance_threshold.VarianceThreshold,classifier=sklearn.svm.classes.S VC)(1)Automatically created scikit-learn flow.
openmlstudy14.preprocessing.ConditionalImputer(6)_axis0
openmlstudy14.preprocessing.ConditionalImputer(6)_categorical_features[]
openmlstudy14.preprocessing.ConditionalImputer(6)_copytrue
openmlstudy14.preprocessing.ConditionalImputer(6)_fill_empty0
openmlstudy14.preprocessing.ConditionalImputer(6)_missing_values"NaN"
openmlstudy14.preprocessing.ConditionalImputer(6)_strategy"most_frequent"
openmlstudy14.preprocessing.ConditionalImputer(6)_strategy_nominal"most_frequent"
openmlstudy14.preprocessing.ConditionalImputer(6)_verbose0
sklearn.preprocessing.data.OneHotEncoder(18)_categorical_features[]
sklearn.preprocessing.data.OneHotEncoder(18)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(18)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(18)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(18)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(12)_threshold0.0
sklearn.preprocessing.data.StandardScaler(6)_copytrue
sklearn.preprocessing.data.StandardScaler(6)_with_meanfalse
sklearn.preprocessing.data.StandardScaler(6)_with_stdtrue
sklearn.svm.classes.SVC(17)_C93.7316667721893
sklearn.svm.classes.SVC(17)_cache_size200
sklearn.svm.classes.SVC(17)_class_weightnull
sklearn.svm.classes.SVC(17)_coef0-0.2203272660504687
sklearn.svm.classes.SVC(17)_decision_function_shapenull
sklearn.svm.classes.SVC(17)_degree3
sklearn.svm.classes.SVC(17)_gamma0.004243533232843633
sklearn.svm.classes.SVC(17)_kernel"poly"
sklearn.svm.classes.SVC(17)_max_iter-1
sklearn.svm.classes.SVC(17)_probabilitytrue
sklearn.svm.classes.SVC(17)_random_state28051
sklearn.svm.classes.SVC(17)_shrinkingtrue
sklearn.svm.classes.SVC(17)_tol0.003980061057243951
sklearn.svm.classes.SVC(17)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.9415 ± 0.0164
Per class
Cross-validation details (10-fold Crossvalidation)
0.5623
Per class
0.5477 ± 0.0772
Cross-validation details (10-fold Crossvalidation)
246.5445 ± 2.5012
Cross-validation details (10-fold Crossvalidation)
0.0741 ± 0.004
Cross-validation details (10-fold Crossvalidation)
0.0941 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
571
Per class
Cross-validation details (10-fold Crossvalidation)
0.6352
Per class
0.5797 ± 0.0707
Cross-validation details (10-fold Crossvalidation)
4.208
Cross-validation details (10-fold Crossvalidation)
0.5797 ± 0.0707
Per class
Cross-validation details (10-fold Crossvalidation)
0.7874 ± 0.0421
Cross-validation details (10-fold Crossvalidation)
0.2169 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.1844 ± 0.0073
Cross-validation details (10-fold Crossvalidation)
0.8503 ± 0.0338
Cross-validation details (10-fold Crossvalidation)