Run
6715385

Run 6715385

Task 59 (Supervised Classification) iris Uploaded 01-09-2017 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeli ne.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hoten coding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.f eature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.en semble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree. DecisionTreeClassifier)))(2)Automatically created scikit-learn flow.
openmlstudy14.preprocessing.ConditionalImputer(5)_axis0
openmlstudy14.preprocessing.ConditionalImputer(5)_categorical_features[]
openmlstudy14.preprocessing.ConditionalImputer(5)_copytrue
openmlstudy14.preprocessing.ConditionalImputer(5)_fill_empty0
openmlstudy14.preprocessing.ConditionalImputer(5)_missing_values"NaN"
openmlstudy14.preprocessing.ConditionalImputer(5)_strategy"median"
openmlstudy14.preprocessing.ConditionalImputer(5)_strategy_nominal"most_frequent"
openmlstudy14.preprocessing.ConditionalImputer(5)_verbose0
sklearn.preprocessing.data.OneHotEncoder(9)_categorical_features[]
sklearn.preprocessing.data.OneHotEncoder(9)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(9)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(9)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(9)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(7)_threshold0.0
sklearn.tree.tree.DecisionTreeClassifier(12)_class_weightnull
sklearn.tree.tree.DecisionTreeClassifier(12)_criterion"gini"
sklearn.tree.tree.DecisionTreeClassifier(12)_max_depthnull
sklearn.tree.tree.DecisionTreeClassifier(12)_max_featuresnull
sklearn.tree.tree.DecisionTreeClassifier(12)_max_leaf_nodesnull
sklearn.tree.tree.DecisionTreeClassifier(12)_min_impurity_split1e-07
sklearn.tree.tree.DecisionTreeClassifier(12)_min_samples_leaf1
sklearn.tree.tree.DecisionTreeClassifier(12)_min_samples_split2
sklearn.tree.tree.DecisionTreeClassifier(12)_min_weight_fraction_leaf0.0
sklearn.tree.tree.DecisionTreeClassifier(12)_presortfalse
sklearn.tree.tree.DecisionTreeClassifier(12)_random_state1
sklearn.tree.tree.DecisionTreeClassifier(12)_splitter"best"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)))(2)_cvnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)))(2)_error_score"raise"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)))(2)_fit_params{}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)))(2)_iidtrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)))(2)_n_iter3
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)))(2)_n_jobs-1
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)))(2)_param_distributions{"classifier__base_estimator__max_depth": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "classifier__learning_rate": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "openmlstudy14.distributions.loguniform_gen", "a": 0.01, "b": 2, "args": [], "kwds": {"low": 0.01, "high": 2, "base": 2}}}, "classifier__n_estimators": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "scipy.stats._discrete_distns.randint_gen", "a": 50, "b": 500, "args": [], "kwds": {"low": 50, "high": 501}}}, "imputation__strategy": ["mean", "median", "most_frequent"]}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)))(2)_pre_dispatch"2*n_jobs"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)))(2)_random_state1
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)))(2)_refittrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)))(2)_return_train_scoretrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)))(2)_scoringnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)))(2)_verbose0
sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)(4)_algorithm"SAMME"
sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)(4)_learning_rate1.0
sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)(4)_n_estimators50
sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)(4)_random_state1

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

17 Evaluation measures

0.97 ± 0.035
Per class
Cross-validation details (10-fold Crossvalidation)
0.96 ± 0.0468
Per class
Cross-validation details (10-fold Crossvalidation)
0.94 ± 0.0699
Cross-validation details (10-fold Crossvalidation)
39.4124 ± 0.2478
Cross-validation details (10-fold Crossvalidation)
0.3702 ± 0.0055
Cross-validation details (10-fold Crossvalidation)
0.4444
Cross-validation details (10-fold Crossvalidation)
150
Per class
Cross-validation details (10-fold Crossvalidation)
0.96 ± 0.0441
Per class
Cross-validation details (10-fold Crossvalidation)
0.96 ± 0.0466
Cross-validation details (10-fold Crossvalidation)
1.585
Cross-validation details (10-fold Crossvalidation)
0.96 ± 0.0466
Per class
Cross-validation details (10-fold Crossvalidation)
0.8329 ± 0.0124
Cross-validation details (10-fold Crossvalidation)
0.4714
Cross-validation details (10-fold Crossvalidation)
0.3937 ± 0.007
Cross-validation details (10-fold Crossvalidation)
0.8351 ± 0.0148
Cross-validation details (10-fold Crossvalidation)