Run
6130128

Run 6130128

Task 59 (Supervised Classification) iris Uploaded 21-08-2017 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeli ne.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hoten coding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.f eature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.en semble.forest.RandomForestClassifier))(3)Automatically created scikit-learn flow.
openmlstudy14.preprocessing.ConditionalImputer(5)_axis0
openmlstudy14.preprocessing.ConditionalImputer(5)_categorical_features[]
openmlstudy14.preprocessing.ConditionalImputer(5)_copytrue
openmlstudy14.preprocessing.ConditionalImputer(5)_fill_empty0
openmlstudy14.preprocessing.ConditionalImputer(5)_missing_values"NaN"
openmlstudy14.preprocessing.ConditionalImputer(5)_strategy"median"
openmlstudy14.preprocessing.ConditionalImputer(5)_strategy_nominal"most_frequent"
openmlstudy14.preprocessing.ConditionalImputer(5)_verbose0
sklearn.preprocessing.data.OneHotEncoder(9)_categorical_features[]
sklearn.preprocessing.data.OneHotEncoder(9)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(9)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(9)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(9)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(7)_threshold0.0
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(3)_cvnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(3)_error_score"raise"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(3)_fit_params{}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(3)_iidtrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(3)_n_iter50
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(3)_n_jobs1
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(3)_param_distributions{"classifier__min_samples_leaf": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], "classifier__max_features": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], "classifier__bootstrap": [true, false], "classifier__min_samples_split": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], "imputation__strategy": ["mean", "median", "most_frequent"]}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(3)_pre_dispatch"2*n_jobs"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(3)_random_state1
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(3)_refittrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(3)_return_train_scoretrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(3)_scoringnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(3)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(24)_bootstraptrue
sklearn.ensemble.forest.RandomForestClassifier(24)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(24)_criterion"gini"
sklearn.ensemble.forest.RandomForestClassifier(24)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(24)_max_features"auto"
sklearn.ensemble.forest.RandomForestClassifier(24)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(24)_min_impurity_split1e-07
sklearn.ensemble.forest.RandomForestClassifier(24)_min_samples_leaf1
sklearn.ensemble.forest.RandomForestClassifier(24)_min_samples_split2
sklearn.ensemble.forest.RandomForestClassifier(24)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(24)_n_estimators10
sklearn.ensemble.forest.RandomForestClassifier(24)_n_jobs1
sklearn.ensemble.forest.RandomForestClassifier(24)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(24)_random_state1
sklearn.ensemble.forest.RandomForestClassifier(24)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(24)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

17 Evaluation measures

0.9902 ± 0.0153
Per class
Cross-validation details (10-fold Crossvalidation)
0.9466 ± 0.0621
Per class
Cross-validation details (10-fold Crossvalidation)
0.92 ± 0.0919
Cross-validation details (10-fold Crossvalidation)
134.6199 ± 1.0427
Cross-validation details (10-fold Crossvalidation)
0.0567 ± 0.0386
Cross-validation details (10-fold Crossvalidation)
0.4444
Cross-validation details (10-fold Crossvalidation)
150
Per class
Cross-validation details (10-fold Crossvalidation)
0.9471 ± 0.0562
Per class
Cross-validation details (10-fold Crossvalidation)
0.9467 ± 0.0613
Cross-validation details (10-fold Crossvalidation)
1.585
Cross-validation details (10-fold Crossvalidation)
0.9467 ± 0.0613
Per class
Cross-validation details (10-fold Crossvalidation)
0.1277 ± 0.0869
Cross-validation details (10-fold Crossvalidation)
0.4714
Cross-validation details (10-fold Crossvalidation)
0.1588 ± 0.0743
Cross-validation details (10-fold Crossvalidation)
0.3369 ± 0.1576
Cross-validation details (10-fold Crossvalidation)