Run
6123677

Run 6123677

Task 14964 (Supervised Classification) artificial-characters Uploaded 19-08-2017 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeli ne.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hoten coding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.f eature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.en semble.forest.RandomForestClassifier))(1)Automatically created scikit-learn flow.
sklearn.ensemble.forest.RandomForestClassifier(21)_bootstraptrue
sklearn.ensemble.forest.RandomForestClassifier(21)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(21)_criterion"gini"
sklearn.ensemble.forest.RandomForestClassifier(21)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(21)_max_features"auto"
sklearn.ensemble.forest.RandomForestClassifier(21)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(21)_min_impurity_split1e-07
sklearn.ensemble.forest.RandomForestClassifier(21)_min_samples_leaf18
sklearn.ensemble.forest.RandomForestClassifier(21)_min_samples_split2
sklearn.ensemble.forest.RandomForestClassifier(21)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(21)_n_estimators10
sklearn.ensemble.forest.RandomForestClassifier(21)_n_jobs1
sklearn.ensemble.forest.RandomForestClassifier(21)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(21)_random_state1
sklearn.ensemble.forest.RandomForestClassifier(21)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(21)_warm_startfalse
openmlstudy14.preprocessing.ConditionalImputer(2)_axis0
openmlstudy14.preprocessing.ConditionalImputer(2)_categorical_features[]
openmlstudy14.preprocessing.ConditionalImputer(2)_copytrue
openmlstudy14.preprocessing.ConditionalImputer(2)_fill_empty0
openmlstudy14.preprocessing.ConditionalImputer(2)_missing_values"NaN"
openmlstudy14.preprocessing.ConditionalImputer(2)_strategy"median"
openmlstudy14.preprocessing.ConditionalImputer(2)_strategy_nominal"most_frequent"
openmlstudy14.preprocessing.ConditionalImputer(2)_verbose0
sklearn.preprocessing.data.OneHotEncoder(7)_categorical_features[]
sklearn.preprocessing.data.OneHotEncoder(7)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(7)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(7)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(7)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(4)_threshold0.0
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_cvnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_error_score"raise"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_fit_params{}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_iidtrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_n_iter50
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_n_jobs1
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_param_distributions{"classifier__max_features": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], "classifier__bootstrap": [true, false], "classifier__min_samples_split": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], "classifier__criterion": ["gini", "entropy"], "imputation__strategy": ["mean", "median", "most_frequent"]}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_pre_dispatch"2*n_jobs"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_random_state1
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_refittrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_return_train_scoretrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_scoringnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_verbose0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

17 Evaluation measures

0.9687 ± 0.0022
Per class
Cross-validation details (10-fold Crossvalidation)
0.6963 ± 0.019
Per class
Cross-validation details (10-fold Crossvalidation)
0.6612 ± 0.0214
Cross-validation details (10-fold Crossvalidation)
7027.3705 ± 16.7291
Cross-validation details (10-fold Crossvalidation)
0.0875 ± 0.0043
Cross-validation details (10-fold Crossvalidation)
0.179 ± 0
Cross-validation details (10-fold Crossvalidation)
10218
Per class
Cross-validation details (10-fold Crossvalidation)
0.6976 ± 0.0187
Per class
Cross-validation details (10-fold Crossvalidation)
0.6966 ± 0.0192
Cross-validation details (10-fold Crossvalidation)
3.2849
Cross-validation details (10-fold Crossvalidation)
0.6966 ± 0.0192
Per class
Cross-validation details (10-fold Crossvalidation)
0.489 ± 0.0241
Cross-validation details (10-fold Crossvalidation)
0.2992 ± 0
Cross-validation details (10-fold Crossvalidation)
0.1987 ± 0.004
Cross-validation details (10-fold Crossvalidation)
0.6641 ± 0.0135
Cross-validation details (10-fold Crossvalidation)