Run
6122841

Run 6122841

Task 3948 (Supervised Classification) KDDCup09_upselling Uploaded 18-08-2017 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeli ne.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hoten coding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.f eature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.en semble.forest.RandomForestClassifier))(2)Automatically created scikit-learn flow.
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(2)_cvnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(2)_error_score"raise"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(2)_fit_params{}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(2)_iidtrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(2)_n_iter50
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(2)_n_jobs1
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(2)_param_distributions{"classifier__min_samples_leaf": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], "classifier__max_features": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], "classifier__bootstrap": [true, false], "classifier__criterion": ["gini", "entropy"], "imputation__strategy": ["mean", "median", "most_frequent"]}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(2)_pre_dispatch"2*n_jobs"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(2)_random_state1
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(2)_refittrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(2)_return_train_scoretrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(2)_scoringnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(2)_verbose0
openmlstudy14.preprocessing.ConditionalImputer(4)_axis0
openmlstudy14.preprocessing.ConditionalImputer(4)_categorical_features[190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228]
openmlstudy14.preprocessing.ConditionalImputer(4)_copytrue
openmlstudy14.preprocessing.ConditionalImputer(4)_fill_empty0
openmlstudy14.preprocessing.ConditionalImputer(4)_missing_values"NaN"
openmlstudy14.preprocessing.ConditionalImputer(4)_strategy"median"
openmlstudy14.preprocessing.ConditionalImputer(4)_strategy_nominal"most_frequent"
openmlstudy14.preprocessing.ConditionalImputer(4)_verbose0
sklearn.preprocessing.data.OneHotEncoder(8)_categorical_features[190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228]
sklearn.preprocessing.data.OneHotEncoder(8)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(8)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(8)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(8)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(6)_threshold0.0
sklearn.ensemble.forest.RandomForestClassifier(23)_bootstraptrue
sklearn.ensemble.forest.RandomForestClassifier(23)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(23)_criterion"gini"
sklearn.ensemble.forest.RandomForestClassifier(23)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(23)_max_features"auto"
sklearn.ensemble.forest.RandomForestClassifier(23)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(23)_min_impurity_split1e-07
sklearn.ensemble.forest.RandomForestClassifier(23)_min_samples_leaf1
sklearn.ensemble.forest.RandomForestClassifier(23)_min_samples_split2
sklearn.ensemble.forest.RandomForestClassifier(23)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(23)_n_estimators10
sklearn.ensemble.forest.RandomForestClassifier(23)_n_jobs1
sklearn.ensemble.forest.RandomForestClassifier(23)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(23)_random_state1
sklearn.ensemble.forest.RandomForestClassifier(23)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(23)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

17 Evaluation measures

0.842 ± 0.0118
Per class
Cross-validation details (10-fold Crossvalidation)
0.9439 ± 0.0019
Per class
Cross-validation details (10-fold Crossvalidation)
0.5419 ± 0.0154
Cross-validation details (10-fold Crossvalidation)
3586.0876 ± 175.809
Cross-validation details (10-fold Crossvalidation)
0.0872 ± 0.0018
Cross-validation details (10-fold Crossvalidation)
0.1364 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
50000
Per class
Cross-validation details (10-fold Crossvalidation)
0.9459 ± 0.0022
Per class
Cross-validation details (10-fold Crossvalidation)
0.9509 ± 0.0016
Cross-validation details (10-fold Crossvalidation)
0.3794
Cross-validation details (10-fold Crossvalidation)
0.9509 ± 0.0016
Per class
Cross-validation details (10-fold Crossvalidation)
0.6394 ± 0.0132
Cross-validation details (10-fold Crossvalidation)
0.2612 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.2112 ± 0.0031
Cross-validation details (10-fold Crossvalidation)
0.8084 ± 0.0116
Cross-validation details (10-fold Crossvalidation)