Run
6068417

Run 6068417

Task 2075 (Supervised Classification) abalone Uploaded 11-08-2017 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

openmlpimp.sklearn.beam_search.BeamSearchCV(estimator=sklearn.pipeline.Pipe line(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding= sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_ selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble. forest.RandomForestClassifier))(1)Automatically created scikit-learn flow.
sklearn.ensemble.forest.RandomForestClassifier(21)_bootstraptrue
sklearn.ensemble.forest.RandomForestClassifier(21)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(21)_criterion"gini"
sklearn.ensemble.forest.RandomForestClassifier(21)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(21)_max_features"auto"
sklearn.ensemble.forest.RandomForestClassifier(21)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(21)_min_impurity_split1e-07
sklearn.ensemble.forest.RandomForestClassifier(21)_min_samples_leaf1
sklearn.ensemble.forest.RandomForestClassifier(21)_min_samples_split2
sklearn.ensemble.forest.RandomForestClassifier(21)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(21)_n_estimators10
sklearn.ensemble.forest.RandomForestClassifier(21)_n_jobs1
sklearn.ensemble.forest.RandomForestClassifier(21)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(21)_random_state1
sklearn.ensemble.forest.RandomForestClassifier(21)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(21)_warm_startfalse
openmlstudy14.preprocessing.ConditionalImputer(2)_axis0
openmlstudy14.preprocessing.ConditionalImputer(2)_categorical_features[0]
openmlstudy14.preprocessing.ConditionalImputer(2)_copytrue
openmlstudy14.preprocessing.ConditionalImputer(2)_fill_empty0
openmlstudy14.preprocessing.ConditionalImputer(2)_missing_values"NaN"
openmlstudy14.preprocessing.ConditionalImputer(2)_strategy"median"
openmlstudy14.preprocessing.ConditionalImputer(2)_strategy_nominal"most_frequent"
openmlstudy14.preprocessing.ConditionalImputer(2)_verbose0
sklearn.preprocessing.data.OneHotEncoder(7)_categorical_features[0]
sklearn.preprocessing.data.OneHotEncoder(7)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(7)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(7)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(7)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(4)_threshold0.0
openmlpimp.sklearn.beam_search.BeamSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_beam_width1
openmlpimp.sklearn.beam_search.BeamSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_cvnull
openmlpimp.sklearn.beam_search.BeamSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_error_score"raise"
openmlpimp.sklearn.beam_search.BeamSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_fit_params{}
openmlpimp.sklearn.beam_search.BeamSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_iidtrue
openmlpimp.sklearn.beam_search.BeamSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_n_jobs1
openmlpimp.sklearn.beam_search.BeamSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_param_distributions{"imputation__strategy": ["mean", "median", "most_frequent"], "classifier__criterion": ["gini", "entropy"], "classifier__min_samples_split": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], "classifier__bootstrap": [true, false], "classifier__max_features": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], "classifier__min_samples_leaf": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]}
openmlpimp.sklearn.beam_search.BeamSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_pre_dispatch"2*n_jobs"
openmlpimp.sklearn.beam_search.BeamSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_refittrue
openmlpimp.sklearn.beam_search.BeamSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_scoring{"oml-python:serialized_object": "function", "value": "sklearn.metrics.scorer._passthrough_scorer"}
openmlpimp.sklearn.beam_search.BeamSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_verbose0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

15 Evaluation measures

0.7497 ± 0.0151
Per class
Cross-validation details (10-fold Crossvalidation)
0.1585 ± 0.0226
Cross-validation details (10-fold Crossvalidation)
1005.0481 ± 5.4037
Cross-validation details (10-fold Crossvalidation)
0.0561 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.0618 ± 0
Cross-validation details (10-fold Crossvalidation)
4177
Per class
Cross-validation details (10-fold Crossvalidation)
0.2643 ± 0.0191
Cross-validation details (10-fold Crossvalidation)
3.6268
Cross-validation details (10-fold Crossvalidation)
0.2643 ± 0.0191
Per class
Cross-validation details (10-fold Crossvalidation)
0.9086 ± 0.0065
Cross-validation details (10-fold Crossvalidation)
0.1757 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.1687 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.9602 ± 0.0079
Cross-validation details (10-fold Crossvalidation)