Run
6014212

Run 6014212

Task 14968 (Supervised Classification) cylinder-bands Uploaded 18-07-2017 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Evaluation Engine Exception: Run description file not present.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.Conditiona lImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethres hold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classif ier=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=skle arn.tree.tree.DecisionTreeClassifier))(1)Automatically created scikit-learn flow.
sklearn.tree.tree.DecisionTreeClassifier(10)_class_weightnull
sklearn.tree.tree.DecisionTreeClassifier(10)_criterion"gini"
sklearn.tree.tree.DecisionTreeClassifier(10)_max_depth10
sklearn.tree.tree.DecisionTreeClassifier(10)_max_featuresnull
sklearn.tree.tree.DecisionTreeClassifier(10)_max_leaf_nodesnull
sklearn.tree.tree.DecisionTreeClassifier(10)_min_impurity_split1e-07
sklearn.tree.tree.DecisionTreeClassifier(10)_min_samples_leaf1
sklearn.tree.tree.DecisionTreeClassifier(10)_min_samples_split2
sklearn.tree.tree.DecisionTreeClassifier(10)_min_weight_fraction_leaf0.0
sklearn.tree.tree.DecisionTreeClassifier(10)_presortfalse
sklearn.tree.tree.DecisionTreeClassifier(10)_random_state8230
sklearn.tree.tree.DecisionTreeClassifier(10)_splitter"best"
openmlstudy14.preprocessing.ConditionalImputer(2)_axis0
openmlstudy14.preprocessing.ConditionalImputer(2)_categorical_features[0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 20, 34, 36]
openmlstudy14.preprocessing.ConditionalImputer(2)_copytrue
openmlstudy14.preprocessing.ConditionalImputer(2)_fill_empty0
openmlstudy14.preprocessing.ConditionalImputer(2)_missing_values"NaN"
openmlstudy14.preprocessing.ConditionalImputer(2)_strategy"most_frequent"
openmlstudy14.preprocessing.ConditionalImputer(2)_strategy_nominal"most_frequent"
openmlstudy14.preprocessing.ConditionalImputer(2)_verbose0
sklearn.preprocessing.data.OneHotEncoder(7)_categorical_features[0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 20, 34, 36]
sklearn.preprocessing.data.OneHotEncoder(7)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(7)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(7)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(7)_sparsefalse
sklearn.feature_selection.variance_threshold.VarianceThreshold(4)_threshold0.0
sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)(2)_algorithm"SAMME.R"
sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)(2)_learning_rate0.06379157704944714
sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)(2)_n_estimators476
sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)(2)_random_state39468

Result files

0 Evaluation measures