Run
5994664

Run 5994664

Task 3021 (Supervised Classification) sick Uploaded 17-07-2017 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Evaluation Engine Exception: Run description file not present.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.Conditiona lImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethres hold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classif ier=sklearn.ensemble.forest.RandomForestClassifier)(1)Automatically created scikit-learn flow.
sklearn.ensemble.forest.RandomForestClassifier(21)_bootstrapfalse
sklearn.ensemble.forest.RandomForestClassifier(21)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(21)_criterion"gini"
sklearn.ensemble.forest.RandomForestClassifier(21)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(21)_max_features0.11420043233270771
sklearn.ensemble.forest.RandomForestClassifier(21)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(21)_min_impurity_split1e-07
sklearn.ensemble.forest.RandomForestClassifier(21)_min_samples_leaf20
sklearn.ensemble.forest.RandomForestClassifier(21)_min_samples_split10
sklearn.ensemble.forest.RandomForestClassifier(21)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(21)_n_estimators100
sklearn.ensemble.forest.RandomForestClassifier(21)_n_jobs1
sklearn.ensemble.forest.RandomForestClassifier(21)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(21)_random_state30671
sklearn.ensemble.forest.RandomForestClassifier(21)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(21)_warm_startfalse
openmlstudy14.preprocessing.ConditionalImputer(2)_axis0
openmlstudy14.preprocessing.ConditionalImputer(2)_categorical_features[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28]
openmlstudy14.preprocessing.ConditionalImputer(2)_copytrue
openmlstudy14.preprocessing.ConditionalImputer(2)_fill_empty0
openmlstudy14.preprocessing.ConditionalImputer(2)_missing_values"NaN"
openmlstudy14.preprocessing.ConditionalImputer(2)_strategy"mean"
openmlstudy14.preprocessing.ConditionalImputer(2)_strategy_nominal"most_frequent"
openmlstudy14.preprocessing.ConditionalImputer(2)_verbose0
sklearn.preprocessing.data.OneHotEncoder(7)_categorical_features[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28]
sklearn.preprocessing.data.OneHotEncoder(7)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(7)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(7)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(7)_sparsefalse
sklearn.feature_selection.variance_threshold.VarianceThreshold(4)_threshold0.0

Result files

0 Evaluation measures