Run
4711166

Run 4711166

Task 9977 (Supervised Classification) nomao Uploaded 07-07-2017 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-pimp openml-python Sklearn_0.18.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.Conditiona lImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethres hold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classif ier=sklearn.tree.tree.DecisionTreeClassifier)(1)Automatically created scikit-learn flow.
sklearn.tree.tree.DecisionTreeClassifier(10)_class_weightnull
sklearn.tree.tree.DecisionTreeClassifier(10)_criterion"entropy"
sklearn.tree.tree.DecisionTreeClassifier(10)_max_depth0.663630804230555
sklearn.tree.tree.DecisionTreeClassifier(10)_max_features1.0
sklearn.tree.tree.DecisionTreeClassifier(10)_max_leaf_nodesnull
sklearn.tree.tree.DecisionTreeClassifier(10)_min_impurity_split1e-07
sklearn.tree.tree.DecisionTreeClassifier(10)_min_samples_leaf4
sklearn.tree.tree.DecisionTreeClassifier(10)_min_samples_split18
sklearn.tree.tree.DecisionTreeClassifier(10)_min_weight_fraction_leaf0.0
sklearn.tree.tree.DecisionTreeClassifier(10)_presortfalse
sklearn.tree.tree.DecisionTreeClassifier(10)_random_state34838
sklearn.tree.tree.DecisionTreeClassifier(10)_splitter"best"
openmlstudy14.preprocessing.ConditionalImputer(2)_axis0
openmlstudy14.preprocessing.ConditionalImputer(2)_categorical_features[6, 7, 14, 15, 22, 23, 30, 31, 38, 39, 46, 47, 54, 55, 62, 63, 70, 71, 78, 79, 86, 87, 91, 95, 99, 103, 107, 111, 115]
openmlstudy14.preprocessing.ConditionalImputer(2)_copytrue
openmlstudy14.preprocessing.ConditionalImputer(2)_fill_empty0
openmlstudy14.preprocessing.ConditionalImputer(2)_missing_values"NaN"
openmlstudy14.preprocessing.ConditionalImputer(2)_strategy"median"
openmlstudy14.preprocessing.ConditionalImputer(2)_strategy_nominal"most_frequent"
openmlstudy14.preprocessing.ConditionalImputer(2)_verbose0
sklearn.preprocessing.data.OneHotEncoder(7)_categorical_features[6, 7, 14, 15, 22, 23, 30, 31, 38, 39, 46, 47, 54, 55, 62, 63, 70, 71, 78, 79, 86, 87, 91, 95, 99, 103, 107, 111, 115]
sklearn.preprocessing.data.OneHotEncoder(7)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(7)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(7)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(7)_sparsefalse
sklearn.feature_selection.variance_threshold.VarianceThreshold(4)_threshold0.0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

15 Evaluation measures

0.4999
Per class
Cross-validation details (10-fold Crossvalidation)
0.4037 ± 0.0494
Cross-validation details (10-fold Crossvalidation)
0.4081 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4081 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
34465
Per class
Cross-validation details (10-fold Crossvalidation)
0.7144 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.863
Cross-validation details (10-fold Crossvalidation)
0.7144 ± 0.0001
Per class
Cross-validation details (10-fold Crossvalidation)
1 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4517 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.4517 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
1 ± 0
Cross-validation details (10-fold Crossvalidation)