Run
4710295

Run 4710295

Task 31 (Supervised Classification) credit-g Uploaded 07-07-2017 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-pimp openml-python Sklearn_0.18.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.Conditiona lImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethres hold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classif ier=sklearn.tree.tree.DecisionTreeClassifier)(1)Automatically created scikit-learn flow.
sklearn.tree.tree.DecisionTreeClassifier(10)_class_weightnull
sklearn.tree.tree.DecisionTreeClassifier(10)_criterion"gini"
sklearn.tree.tree.DecisionTreeClassifier(10)_max_depth1.0025460645516666
sklearn.tree.tree.DecisionTreeClassifier(10)_max_features1.0
sklearn.tree.tree.DecisionTreeClassifier(10)_max_leaf_nodesnull
sklearn.tree.tree.DecisionTreeClassifier(10)_min_impurity_split1e-07
sklearn.tree.tree.DecisionTreeClassifier(10)_min_samples_leaf19
sklearn.tree.tree.DecisionTreeClassifier(10)_min_samples_split17
sklearn.tree.tree.DecisionTreeClassifier(10)_min_weight_fraction_leaf0.0
sklearn.tree.tree.DecisionTreeClassifier(10)_presortfalse
sklearn.tree.tree.DecisionTreeClassifier(10)_random_state24668
sklearn.tree.tree.DecisionTreeClassifier(10)_splitter"best"
openmlstudy14.preprocessing.ConditionalImputer(2)_axis0
openmlstudy14.preprocessing.ConditionalImputer(2)_categorical_features[0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 18, 19]
openmlstudy14.preprocessing.ConditionalImputer(2)_copytrue
openmlstudy14.preprocessing.ConditionalImputer(2)_fill_empty0
openmlstudy14.preprocessing.ConditionalImputer(2)_missing_values"NaN"
openmlstudy14.preprocessing.ConditionalImputer(2)_strategy"mean"
openmlstudy14.preprocessing.ConditionalImputer(2)_strategy_nominal"most_frequent"
openmlstudy14.preprocessing.ConditionalImputer(2)_verbose0
sklearn.preprocessing.data.OneHotEncoder(7)_categorical_features[0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 18, 19]
sklearn.preprocessing.data.OneHotEncoder(7)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(7)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(7)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(7)_sparsefalse
sklearn.feature_selection.variance_threshold.VarianceThreshold(4)_threshold0.0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

15 Evaluation measures

0.6506 ± 0.0396
Per class
Cross-validation details (10-fold Crossvalidation)
60.9412 ± 4.3775
Cross-validation details (10-fold Crossvalidation)
0.3766 ± 0.0139
Cross-validation details (10-fold Crossvalidation)
0.4202
Cross-validation details (10-fold Crossvalidation)
1000
Per class
Cross-validation details (10-fold Crossvalidation)
0.7
Cross-validation details (10-fold Crossvalidation)
0.8818
Cross-validation details (10-fold Crossvalidation)
0.7
Per class
Cross-validation details (10-fold Crossvalidation)
0.8963 ± 0.0332
Cross-validation details (10-fold Crossvalidation)
0.4583
Cross-validation details (10-fold Crossvalidation)
0.4341 ± 0.0109
Cross-validation details (10-fold Crossvalidation)
0.9472 ± 0.0238
Cross-validation details (10-fold Crossvalidation)