Run
2087079

Run 2087079

Task 37 (Supervised Classification) diabetes Uploaded 24-04-2017 by Jeroen van Hoof
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing.data.OneHotEn coder,votingclassifier=sklearn.ensemble.voting_classifier.VotingClassifier( DecisionTreeClassifier=sklearn.pipeline.Pipeline(standardscaler=sklearn.pre processing.data.StandardScaler,decisiontreeclassifier=sklearn.tree.tree.Dec isionTreeClassifier),ExtraTreeClassifier=sklearn.tree.tree.ExtraTreeClassif ier))(1)Automatically created scikit-learn flow.
sklearn.tree.tree.DecisionTreeClassifier(6)_class_weightNone
sklearn.tree.tree.DecisionTreeClassifier(6)_criteriongini
sklearn.tree.tree.DecisionTreeClassifier(6)_max_depthNone
sklearn.tree.tree.DecisionTreeClassifier(6)_max_featuresNone
sklearn.tree.tree.DecisionTreeClassifier(6)_max_leaf_nodesNone
sklearn.tree.tree.DecisionTreeClassifier(6)_min_impurity_split1e-07
sklearn.tree.tree.DecisionTreeClassifier(6)_min_samples_leaf1
sklearn.tree.tree.DecisionTreeClassifier(6)_min_samples_split2
sklearn.tree.tree.DecisionTreeClassifier(6)_min_weight_fraction_leaf0.0
sklearn.tree.tree.DecisionTreeClassifier(6)_presortFalse
sklearn.tree.tree.DecisionTreeClassifier(6)_random_stateNone
sklearn.tree.tree.DecisionTreeClassifier(6)_splitterbest
sklearn.preprocessing.data.OneHotEncoder(3)_categorical_features[False, False, False, False, False, False, False, False]
sklearn.preprocessing.data.OneHotEncoder(3)_dtype
sklearn.preprocessing.data.OneHotEncoder(3)_handle_unknownerror
sklearn.preprocessing.data.OneHotEncoder(3)_n_valuesauto
sklearn.preprocessing.data.OneHotEncoder(3)_sparseFalse
sklearn.tree.tree.ExtraTreeClassifier(1)_class_weightNone
sklearn.tree.tree.ExtraTreeClassifier(1)_criteriongini
sklearn.tree.tree.ExtraTreeClassifier(1)_max_depthNone
sklearn.tree.tree.ExtraTreeClassifier(1)_max_featuresauto
sklearn.tree.tree.ExtraTreeClassifier(1)_max_leaf_nodesNone
sklearn.tree.tree.ExtraTreeClassifier(1)_min_impurity_split1e-07
sklearn.tree.tree.ExtraTreeClassifier(1)_min_samples_leaf1
sklearn.tree.tree.ExtraTreeClassifier(1)_min_samples_split2
sklearn.tree.tree.ExtraTreeClassifier(1)_min_weight_fraction_leaf0.0
sklearn.tree.tree.ExtraTreeClassifier(1)_random_stateNone
sklearn.tree.tree.ExtraTreeClassifier(1)_splitterrandom
sklearn.preprocessing.data.StandardScaler(1)_copyTrue
sklearn.preprocessing.data.StandardScaler(1)_with_meanTrue
sklearn.preprocessing.data.StandardScaler(1)_with_stdTrue
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing.data.OneHotEncoder,votingclassifier=sklearn.ensemble.voting_classifier.VotingClassifier(DecisionTreeClassifier=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler,decisiontreeclassifier=sklearn.tree.tree.DecisionTreeClassifier),ExtraTreeClassifier=sklearn.tree.tree.ExtraTreeClassifier))(1)_steps[('onehotencoder', OneHotEncoder(categorical_features=[False, False, False, False, False, False, False, False], dtype=, handle_unknown='error', n_values='auto', sparse=False)), ('votingclassifier', VotingClassifier(estimators=[('DecisionTreeClassifier', Pipeline(steps=[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('decisiontreeclassifier', DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None, max_features=None, max_leaf_nodes=None, ...min_samples_split=2, min_weight_fraction_leaf=0.0, random_state=None, splitter='random'))], n_jobs=1, voting='soft', weights=None))]
sklearn.ensemble.voting_classifier.VotingClassifier(DecisionTreeClassifier=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler,decisiontreeclassifier=sklearn.tree.tree.DecisionTreeClassifier),ExtraTreeClassifier=sklearn.tree.tree.ExtraTreeClassifier)(1)_estimators[('DecisionTreeClassifier', Pipeline(steps=[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('decisiontreeclassifier', DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_split=1e-07, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=None, splitter='best'))])), ('ExtraTreeClassifier', ExtraTreeClassifier(class_weight=None, criterion='gini', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_split=1e-07, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, random_state=None, splitter='random'))]
sklearn.ensemble.voting_classifier.VotingClassifier(DecisionTreeClassifier=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler,decisiontreeclassifier=sklearn.tree.tree.DecisionTreeClassifier),ExtraTreeClassifier=sklearn.tree.tree.ExtraTreeClassifier)(1)_n_jobs1
sklearn.ensemble.voting_classifier.VotingClassifier(DecisionTreeClassifier=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler,decisiontreeclassifier=sklearn.tree.tree.DecisionTreeClassifier),ExtraTreeClassifier=sklearn.tree.tree.ExtraTreeClassifier)(1)_votingsoft
sklearn.ensemble.voting_classifier.VotingClassifier(DecisionTreeClassifier=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler,decisiontreeclassifier=sklearn.tree.tree.DecisionTreeClassifier),ExtraTreeClassifier=sklearn.tree.tree.ExtraTreeClassifier)(1)_weightsNone
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler,decisiontreeclassifier=sklearn.tree.tree.DecisionTreeClassifier)(1)_steps[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('decisiontreeclassifier', DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_split=1e-07, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=None, splitter='best'))]

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7214
Per class
Cross-validation details (10-fold Crossvalidation)
0.689
Per class
Cross-validation details (10-fold Crossvalidation)
0.2994
Cross-validation details (10-fold Crossvalidation)
226.3797
Cross-validation details (10-fold Crossvalidation)
0.3066
Cross-validation details (10-fold Crossvalidation)
0.4545
Cross-validation details (10-fold Crossvalidation)
768
Per class
Cross-validation details (10-fold Crossvalidation)
0.7009
Per class
Cross-validation details (10-fold Crossvalidation)
0.7122
Cross-validation details (10-fold Crossvalidation)
0.9335
Cross-validation details (10-fold Crossvalidation)
0.7122
Per class
Cross-validation details (10-fold Crossvalidation)
0.6747
Cross-validation details (10-fold Crossvalidation)
0.4766
Cross-validation details (10-fold Crossvalidation)
0.4818
Cross-validation details (10-fold Crossvalidation)
1.0107
Cross-validation details (10-fold Crossvalidation)