Run
2041940

Run 2041940

Task 31 (Supervised Classification) credit-g Uploaded 15-04-2017 by Jeroen van Hoof
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • NumPy_1.12.0. Python_3.6.0. run_task Sat_Apr_15_18.39.39_2017 SciPy_0.19.0. sklearn.pipeline.Pipeline Sklearn_0.18.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(dualimputer=extra.dual_imputer.DualImputer,onehot encoder=sklearn.preprocessing.data.OneHotEncoder,randomforestclassifier=skl earn.ensemble.forest.RandomForestClassifier)(1)Automatically created scikit-learn flow.
sklearn.ensemble.forest.RandomForestClassifier(16)_bootstrapFalse
sklearn.ensemble.forest.RandomForestClassifier(16)_class_weightNone
sklearn.ensemble.forest.RandomForestClassifier(16)_criteriongini
sklearn.ensemble.forest.RandomForestClassifier(16)_max_depth9
sklearn.ensemble.forest.RandomForestClassifier(16)_max_features0.25
sklearn.ensemble.forest.RandomForestClassifier(16)_max_leaf_nodesNone
sklearn.ensemble.forest.RandomForestClassifier(16)_min_impurity_split1e-07
sklearn.ensemble.forest.RandomForestClassifier(16)_min_samples_leaf1
sklearn.ensemble.forest.RandomForestClassifier(16)_min_samples_split4
sklearn.ensemble.forest.RandomForestClassifier(16)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(16)_n_estimators300
sklearn.ensemble.forest.RandomForestClassifier(16)_n_jobs-1
sklearn.ensemble.forest.RandomForestClassifier(16)_oob_scoreFalse
sklearn.ensemble.forest.RandomForestClassifier(16)_random_state3
sklearn.ensemble.forest.RandomForestClassifier(16)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(16)_warm_startFalse
sklearn.preprocessing.data.OneHotEncoder(3)_categorical_features[True, False, True, True, False, True, True, False, True, True, False, True, False, True, True, False, True, False, True, True]
sklearn.preprocessing.data.OneHotEncoder(3)_dtype
sklearn.preprocessing.data.OneHotEncoder(3)_handle_unknownignore
sklearn.preprocessing.data.OneHotEncoder(3)_n_valuesauto
sklearn.preprocessing.data.OneHotEncoder(3)_sparseFalse
sklearn.pipeline.Pipeline(dualimputer=extra.dual_imputer.DualImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)(1)_steps[('dualimputer', ), ('onehotencoder', OneHotEncoder(categorical_features=[True, False, True, True, False, True, True, False, True, True, False, True, False, True, True, False, True, False, True, True], dtype=, handle_unknown='ignore', n_values='auto', sparse=False)), ('randomforestclassifier', RandomForestClassifier(bootstrap=False, class_weight=None, criterion='gini', max_depth=9, max_features=0.25, max_leaf_nodes=None, min_impurity_split=1e-07, min_samples_leaf=1, min_samples_split=4, min_weight_fraction_leaf=0.0, n_estimators=300, n_jobs=-1, oob_score=False, random_state=3, verbose=0, warm_start=False))]

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7814
Per class
Cross-validation details (10-fold Crossvalidation)
0.7504
Per class
Cross-validation details (10-fold Crossvalidation)
0.383
Cross-validation details (10-fold Crossvalidation)
192.9006
Cross-validation details (10-fold Crossvalidation)
0.3349
Cross-validation details (10-fold Crossvalidation)
0.4202
Cross-validation details (10-fold Crossvalidation)
1000
Per class
Cross-validation details (10-fold Crossvalidation)
0.7559
Per class
Cross-validation details (10-fold Crossvalidation)
0.768
Cross-validation details (10-fold Crossvalidation)
0.8818
Cross-validation details (10-fold Crossvalidation)
0.768
Per class
Cross-validation details (10-fold Crossvalidation)
0.797
Cross-validation details (10-fold Crossvalidation)
0.4583
Cross-validation details (10-fold Crossvalidation)
0.4071
Cross-validation details (10-fold Crossvalidation)
0.8884
Cross-validation details (10-fold Crossvalidation)