Run
1853408

Run 1853408

Task 59 (Supervised Classification) iris Uploaded 21-03-2017 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Client side error: 'RandomizedSearchCV' object has no attribute 'cv_results_'
Evaluation Engine Exception: Required output files not present (e.g., arff predictions).
  • openml-python Sklearn_0.18. study_14
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(Imputer=openml.utils.preprocessing.ConditionalImp uter,OneHotEncoder=sklearn.preprocessing.data.OneHotEncoder,VarianceThresho ld=sklearn.feature_selection.variance_threshold.VarianceThreshold,Estimator =sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.svm.c lasses.SVC))(1)Automatically created scikit-learn flow.
openml.utils.preprocessing.ConditionalImputer(1)_axis0
openml.utils.preprocessing.ConditionalImputer(1)_categorical_features[]
openml.utils.preprocessing.ConditionalImputer(1)_copyTrue
openml.utils.preprocessing.ConditionalImputer(1)_empty_attribute_constant0
openml.utils.preprocessing.ConditionalImputer(1)_missing_valuesNaN
openml.utils.preprocessing.ConditionalImputer(1)_strategymedian
openml.utils.preprocessing.ConditionalImputer(1)_strategy_nominalmost_frequent
openml.utils.preprocessing.ConditionalImputer(1)_verbose0
sklearn.preprocessing.data.OneHotEncoder(4)_categorical_features[]
sklearn.preprocessing.data.OneHotEncoder(4)_dtype
sklearn.preprocessing.data.OneHotEncoder(4)_handle_unknownignore
sklearn.preprocessing.data.OneHotEncoder(4)_n_valuesauto
sklearn.preprocessing.data.OneHotEncoder(4)_sparseFalse
sklearn.feature_selection.variance_threshold.VarianceThreshold(1)_threshold0.0
sklearn.pipeline.Pipeline(Imputer=openml.utils.preprocessing.ConditionalImputer,OneHotEncoder=sklearn.preprocessing.data.OneHotEncoder,VarianceThreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.svm.classes.SVC))(1)_steps[('Imputer', ConditionalImputer(axis=0, categorical_features=[], copy=True, empty_attribute_constant=0, missing_values='NaN', strategy='median', strategy_nominal='most_frequent', verbose=0)), ('OneHotEncoder', OneHotEncoder(categorical_features=[], dtype=, handle_unknown='ignore', n_values='auto', sparse=False)), ('VarianceThreshold', VarianceThreshold(threshold=0.0)), ('Estimator', RandomizedSearchCV(cv=3, error_score='raise', estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False), fit_params={}, iid=True, n_iter=200, n_jobs=1, param_distributions={'gamma': [0.000244140625, 0.00048828125, 0.0009765625, 0.001953125, 0.00390625, 0.0078125, 0.015625, 0.03125, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096], 'C': [0.0002441
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.svm.classes.SVC)(1)_cv3
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.svm.classes.SVC)(1)_error_scoreraise
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.svm.classes.SVC)(1)_estimatorSVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False)
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.svm.classes.SVC)(1)_fit_params{}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.svm.classes.SVC)(1)_iidTrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.svm.classes.SVC)(1)_n_iter200
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.svm.classes.SVC)(1)_n_jobs1
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.svm.classes.SVC)(1)_param_distributions{'gamma': [0.000244140625, 0.00048828125, 0.0009765625, 0.001953125, 0.00390625, 0.0078125, 0.015625, 0.03125, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096], 'C': [0.000244140625, 0.00048828125, 0.0009765625, 0.001953125, 0.00390625, 0.0078125, 0.015625, 0.03125, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096]}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.svm.classes.SVC)(1)_pre_dispatch2*n_jobs
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.svm.classes.SVC)(1)_random_stateNone
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.svm.classes.SVC)(1)_refitTrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.svm.classes.SVC)(1)_return_train_scoreTrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.svm.classes.SVC)(1)_scoringNone
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.svm.classes.SVC)(1)_verbose0
sklearn.svm.classes.SVC(6)_C1.0
sklearn.svm.classes.SVC(6)_cache_size200
sklearn.svm.classes.SVC(6)_class_weightNone
sklearn.svm.classes.SVC(6)_coef00.0
sklearn.svm.classes.SVC(6)_decision_function_shapeNone
sklearn.svm.classes.SVC(6)_degree3
sklearn.svm.classes.SVC(6)_gammaauto
sklearn.svm.classes.SVC(6)_kernelrbf
sklearn.svm.classes.SVC(6)_max_iter-1
sklearn.svm.classes.SVC(6)_probabilityFalse
sklearn.svm.classes.SVC(6)_random_stateNone
sklearn.svm.classes.SVC(6)_shrinkingTrue
sklearn.svm.classes.SVC(6)_tol0.001
sklearn.svm.classes.SVC(6)_verboseFalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

0 Evaluation measures