Run
1853405

Run 1853405

Task 34538 (Supervised Classification) MiceProtein Uploaded 21-03-2017 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Client side error: 'GridSearchCV' object has no attribute 'cv_results_'
Evaluation Engine Exception: Required output files not present (e.g., arff predictions).
  • openml-python Sklearn_0.18. study_14
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(Imputer=openml.utils.preprocessing.ConditionalImp uter,OneHotEncoder=sklearn.preprocessing.data.OneHotEncoder,VarianceThresho ld=sklearn.feature_selection.variance_threshold.VarianceThreshold,Estimator =sklearn.model_selection._search.GridSearchCV(estimator=sklearn.tree.tree.D ecisionTreeClassifier))(1)Automatically created scikit-learn flow.
openml.utils.preprocessing.ConditionalImputer(1)_axis0
openml.utils.preprocessing.ConditionalImputer(1)_categorical_features[0, 78, 79, 80]
openml.utils.preprocessing.ConditionalImputer(1)_copyTrue
openml.utils.preprocessing.ConditionalImputer(1)_empty_attribute_constant0
openml.utils.preprocessing.ConditionalImputer(1)_missing_valuesNaN
openml.utils.preprocessing.ConditionalImputer(1)_strategymedian
openml.utils.preprocessing.ConditionalImputer(1)_strategy_nominalmost_frequent
openml.utils.preprocessing.ConditionalImputer(1)_verbose0
sklearn.preprocessing.data.OneHotEncoder(4)_categorical_features[0, 78, 79, 80]
sklearn.preprocessing.data.OneHotEncoder(4)_dtype
sklearn.preprocessing.data.OneHotEncoder(4)_handle_unknownignore
sklearn.preprocessing.data.OneHotEncoder(4)_n_valuesauto
sklearn.preprocessing.data.OneHotEncoder(4)_sparseFalse
sklearn.feature_selection.variance_threshold.VarianceThreshold(1)_threshold0.0
sklearn.pipeline.Pipeline(Imputer=openml.utils.preprocessing.ConditionalImputer,OneHotEncoder=sklearn.preprocessing.data.OneHotEncoder,VarianceThreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.GridSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier))(1)_steps[('Imputer', ConditionalImputer(axis=0, categorical_features=[0, 78, 79, 80], copy=True, empty_attribute_constant=0, missing_values='NaN', strategy='median', strategy_nominal='most_frequent', verbose=0)), ('OneHotEncoder', OneHotEncoder(categorical_features=[0, 78, 79, 80], dtype=, handle_unknown='ignore', n_values='auto', sparse=False)), ('VarianceThreshold', VarianceThreshold(threshold=0.0)), ('Estimator', GridSearchCV(cv=3, error_score='raise', estimator=DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_split=1e-07, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=None, splitter='best'), fit_params={}, iid=True, n_jobs=1, param_grid={'min_samples_split': [2, 4, 8, 16, 32, 64, 128], 'min_samples_leaf': [1, 2, 4, 8, 16, 32, 64]}, pre_dispatch='2*n_job
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_cv3
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_error_scoreraise
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_estimatorDecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_split=1e-07, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=None, splitter='best')
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_fit_params{}
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_iidTrue
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_n_jobs1
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_param_grid{'min_samples_split': [2, 4, 8, 16, 32, 64, 128], 'min_samples_leaf': [1, 2, 4, 8, 16, 32, 64]}
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_pre_dispatch2*n_jobs
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_refitTrue
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_return_train_scoreTrue
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_scoringNone
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_verbose0
sklearn.tree.tree.DecisionTreeClassifier(7)_class_weightNone
sklearn.tree.tree.DecisionTreeClassifier(7)_criteriongini
sklearn.tree.tree.DecisionTreeClassifier(7)_max_depthNone
sklearn.tree.tree.DecisionTreeClassifier(7)_max_featuresNone
sklearn.tree.tree.DecisionTreeClassifier(7)_max_leaf_nodesNone
sklearn.tree.tree.DecisionTreeClassifier(7)_min_impurity_split1e-07
sklearn.tree.tree.DecisionTreeClassifier(7)_min_samples_leaf1
sklearn.tree.tree.DecisionTreeClassifier(7)_min_samples_split2
sklearn.tree.tree.DecisionTreeClassifier(7)_min_weight_fraction_leaf0.0
sklearn.tree.tree.DecisionTreeClassifier(7)_presortFalse
sklearn.tree.tree.DecisionTreeClassifier(7)_random_stateNone
sklearn.tree.tree.DecisionTreeClassifier(7)_splitterbest

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

0 Evaluation measures