Run
1852434

Run 1852434

Task 145677 (Supervised Classification) Bioresponse Uploaded 13-03-2017 by Xiaolei Wang
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • Mon_Mar_13_16.39.04_2017 NumPy_1.11.3. Python_3.5.2. run_task SciPy_0.18.1. sklearn.model_selection._search.GridSearchCV Sklearn_0.18.1.
Issue #Downvotes for this reason By


Flow

sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pip eline(Imputer=sklearn.preprocessing.imputation.Imputer,select=sklearn.featu re_selection.univariate_selection.SelectPercentile,scaler=sklearn.preproces sing.data.MinMaxScaler,Classifier=sklearn.ensemble.forest.RandomForestClass ifier))(1)Automatically created sub-component.
sklearn.ensemble.forest.RandomForestClassifier(16)_bootstrapTrue
sklearn.ensemble.forest.RandomForestClassifier(16)_class_weightNone
sklearn.ensemble.forest.RandomForestClassifier(16)_criteriongini
sklearn.ensemble.forest.RandomForestClassifier(16)_max_depthNone
sklearn.ensemble.forest.RandomForestClassifier(16)_max_featuresauto
sklearn.ensemble.forest.RandomForestClassifier(16)_max_leaf_nodesNone
sklearn.ensemble.forest.RandomForestClassifier(16)_min_impurity_split1e-07
sklearn.ensemble.forest.RandomForestClassifier(16)_min_samples_leaf1
sklearn.ensemble.forest.RandomForestClassifier(16)_min_samples_split2
sklearn.ensemble.forest.RandomForestClassifier(16)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(16)_n_estimators10
sklearn.ensemble.forest.RandomForestClassifier(16)_n_jobs1
sklearn.ensemble.forest.RandomForestClassifier(16)_oob_scoreFalse
sklearn.ensemble.forest.RandomForestClassifier(16)_random_stateNone
sklearn.ensemble.forest.RandomForestClassifier(16)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(16)_warm_startFalse
sklearn.preprocessing.imputation.Imputer(3)_axis0
sklearn.preprocessing.imputation.Imputer(3)_copyTrue
sklearn.preprocessing.imputation.Imputer(3)_missing_valuesNaN
sklearn.preprocessing.imputation.Imputer(3)_strategymean
sklearn.preprocessing.imputation.Imputer(3)_verbose0
sklearn.feature_selection.univariate_selection.SelectPercentile(1)_percentile5
sklearn.feature_selection.univariate_selection.SelectPercentile(1)_score_func
sklearn.preprocessing.data.MinMaxScaler(1)_copyTrue
sklearn.preprocessing.data.MinMaxScaler(1)_feature_range(0, 1)
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imputation.Imputer,select=sklearn.feature_selection.univariate_selection.SelectPercentile,scaler=sklearn.preprocessing.data.MinMaxScaler,Classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_cv10
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imputation.Imputer,select=sklearn.feature_selection.univariate_selection.SelectPercentile,scaler=sklearn.preprocessing.data.MinMaxScaler,Classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_error_scoreraise
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imputation.Imputer,select=sklearn.feature_selection.univariate_selection.SelectPercentile,scaler=sklearn.preprocessing.data.MinMaxScaler,Classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_estimatorPipeline(steps=[('Imputer', Imputer(axis=0, copy=True, missing_values='NaN', strategy='mean', verbose=0)), ('select', SelectPercentile(percentile=5, score_func=)), ('scaler', MinMaxScaler(copy=True, feature_range=(0, 1))), ('Classifier', RandomForestClassifier(b...imators=10, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False))])
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imputation.Imputer,select=sklearn.feature_selection.univariate_selection.SelectPercentile,scaler=sklearn.preprocessing.data.MinMaxScaler,Classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_fit_params{}
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imputation.Imputer,select=sklearn.feature_selection.univariate_selection.SelectPercentile,scaler=sklearn.preprocessing.data.MinMaxScaler,Classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_iidTrue
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imputation.Imputer,select=sklearn.feature_selection.univariate_selection.SelectPercentile,scaler=sklearn.preprocessing.data.MinMaxScaler,Classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_n_jobs-1
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imputation.Imputer,select=sklearn.feature_selection.univariate_selection.SelectPercentile,scaler=sklearn.preprocessing.data.MinMaxScaler,Classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_param_grid{'Classifier__n_estimators': [8, 32, 128, 512]}
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imputation.Imputer,select=sklearn.feature_selection.univariate_selection.SelectPercentile,scaler=sklearn.preprocessing.data.MinMaxScaler,Classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_pre_dispatch2*n_jobs
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imputation.Imputer,select=sklearn.feature_selection.univariate_selection.SelectPercentile,scaler=sklearn.preprocessing.data.MinMaxScaler,Classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_refitTrue
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imputation.Imputer,select=sklearn.feature_selection.univariate_selection.SelectPercentile,scaler=sklearn.preprocessing.data.MinMaxScaler,Classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_return_train_scoreTrue
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imputation.Imputer,select=sklearn.feature_selection.univariate_selection.SelectPercentile,scaler=sklearn.preprocessing.data.MinMaxScaler,Classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_scoringroc_auc
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imputation.Imputer,select=sklearn.feature_selection.univariate_selection.SelectPercentile,scaler=sklearn.preprocessing.data.MinMaxScaler,Classifier=sklearn.ensemble.forest.RandomForestClassifier))(1)_verbose0
sklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imputation.Imputer,select=sklearn.feature_selection.univariate_selection.SelectPercentile,scaler=sklearn.preprocessing.data.MinMaxScaler,Classifier=sklearn.ensemble.forest.RandomForestClassifier)(1)_steps[('Imputer', Imputer(axis=0, copy=True, missing_values='NaN', strategy='mean', verbose=0)), ('select', SelectPercentile(percentile=5, score_func=)), ('scaler', MinMaxScaler(copy=True, feature_range=(0, 1))), ('Classifier', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_split=1e-07, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False))]

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

17 Evaluation measures

0.8735
Per class
Cross-validation details (10-fold Crossvalidation)
0.7998
Per class
Cross-validation details (10-fold Crossvalidation)
0.5964
Cross-validation details (10-fold Crossvalidation)
1550.3797
Cross-validation details (10-fold Crossvalidation)
0.3087
Cross-validation details (10-fold Crossvalidation)
0.4964
Cross-validation details (10-fold Crossvalidation)
3751
Per class
Cross-validation details (10-fold Crossvalidation)
0.7998
Per class
Cross-validation details (10-fold Crossvalidation)
0.8001
Cross-validation details (10-fold Crossvalidation)
0.9948
Cross-validation details (10-fold Crossvalidation)
0.8001
Per class
Cross-validation details (10-fold Crossvalidation)
0.6218
Cross-validation details (10-fold Crossvalidation)
0.4982
Cross-validation details (10-fold Crossvalidation)
0.3802
Cross-validation details (10-fold Crossvalidation)
0.763
Cross-validation details (10-fold Crossvalidation)