Run
10595195

Run 10595195

Task 3954 (Supervised Classification) MagicTelescope Uploaded 15-12-2024 by Bartosz Szymanski
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(49)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. Trees in the forest use the best split strategy, i.e. equivalent to passing `splitter="best"` to the underlying :class:`~sklearn.tree.DecisionTreeRegressor`. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree. For a comparison between tree-based ensemble models see the example :ref:`sphx_glr_auto_examples_ensemble_plot_forest_hist_grad_boosting_comparison.py`.
sklearn.ensemble._forest.RandomForestClassifier(49)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(49)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(49)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(49)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(49)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(49)_max_features"sqrt"
sklearn.ensemble._forest.RandomForestClassifier(49)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(49)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(49)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(49)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(49)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(49)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(49)_monotonic_cstnull
sklearn.ensemble._forest.RandomForestClassifier(49)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(49)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(49)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(49)_random_state57071
sklearn.ensemble._forest.RandomForestClassifier(49)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(49)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9366 ± 0.0059
Per class
Cross-validation details (10-fold Crossvalidation)
0.88 ± 0.0076
Per class
Cross-validation details (10-fold Crossvalidation)
0.7338 ± 0.0171
Cross-validation details (10-fold Crossvalidation)
0.5972 ± 0.0092
Cross-validation details (10-fold Crossvalidation)
0.1943 ± 0.0038
Cross-validation details (10-fold Crossvalidation)
0.456 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.882 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
19020
Per class
Cross-validation details (10-fold Crossvalidation)
0.8817 ± 0.0071
Per class
Cross-validation details (10-fold Crossvalidation)
0.882 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
0.9355 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.4262 ± 0.0084
Cross-validation details (10-fold Crossvalidation)
0.4775 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.2991 ± 0.0057
Cross-validation details (10-fold Crossvalidation)
0.6264 ± 0.012
Cross-validation details (10-fold Crossvalidation)
0.8567 ± 0.0099
Cross-validation details (10-fold Crossvalidation)