Run
10595176

Run 10595176

Task 9978 (Supervised Classification) ozone-level-8hr Uploaded 30-11-2024 by José Evans
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(classifier=sklearn.svm._classes.SVC)(1)A sequence of data transformers with an optional final predictor. `Pipeline` allows you to sequentially apply a list of transformers to preprocess the data and, if desired, conclude the sequence with a final :term:`predictor` for predictive modeling. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final :term:`estimator` only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`. For an example use case of `Pipeline` combined with :class:`~s...
sklearn.svm._classes.SVC(17)_C1.0
sklearn.svm._classes.SVC(17)_break_tiesfalse
sklearn.svm._classes.SVC(17)_cache_size200
sklearn.svm._classes.SVC(17)_class_weightnull
sklearn.svm._classes.SVC(17)_coef00.0
sklearn.svm._classes.SVC(17)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(17)_degree3
sklearn.svm._classes.SVC(17)_gamma"scale"
sklearn.svm._classes.SVC(17)_kernel"rbf"
sklearn.svm._classes.SVC(17)_max_iter-1
sklearn.svm._classes.SVC(17)_probabilityfalse
sklearn.svm._classes.SVC(17)_random_state42
sklearn.svm._classes.SVC(17)_shrinkingtrue
sklearn.svm._classes.SVC(17)_tol0.001
sklearn.svm._classes.SVC(17)_verbosefalse
sklearn.pipeline.Pipeline(classifier=sklearn.svm._classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(classifier=sklearn.svm._classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "classifier", "step_name": "classifier"}}]
sklearn.pipeline.Pipeline(classifier=sklearn.svm._classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

16 Evaluation measures

0.5
Per class
Cross-validation details (10-fold Crossvalidation)
0.2433 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.0631 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.1186 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.9369 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
2534
Per class
Cross-validation details (10-fold Crossvalidation)
0.9369 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.3398 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
0.5323 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.2432 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.2513 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
1.0331 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)