Run
10595175

Run 10595175

Task 9978 (Supervised Classification) ozone-level-8hr Uploaded 30-11-2024 by José Evans
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(preprocessing=sklearn.compose._column_transformer .ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler),classifi er=sklearn.svm._classes.SVC)(1)A sequence of data transformers with an optional final predictor. `Pipeline` allows you to sequentially apply a list of transformers to preprocess the data and, if desired, conclude the sequence with a final :term:`predictor` for predictive modeling. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final :term:`estimator` only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`. For an example use case of `Pipeline` combined with :class:`~s...
sklearn.preprocessing._data.StandardScaler(20)_copytrue
sklearn.preprocessing._data.StandardScaler(20)_with_meantrue
sklearn.preprocessing._data.StandardScaler(20)_with_stdtrue
sklearn.svm._classes.SVC(17)_C1.0
sklearn.svm._classes.SVC(17)_break_tiesfalse
sklearn.svm._classes.SVC(17)_cache_size200
sklearn.svm._classes.SVC(17)_class_weightnull
sklearn.svm._classes.SVC(17)_coef00.0
sklearn.svm._classes.SVC(17)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(17)_degree3
sklearn.svm._classes.SVC(17)_gamma"scale"
sklearn.svm._classes.SVC(17)_kernel"rbf"
sklearn.svm._classes.SVC(17)_max_iter-1
sklearn.svm._classes.SVC(17)_probabilityfalse
sklearn.svm._classes.SVC(17)_random_state42
sklearn.svm._classes.SVC(17)_shrinkingtrue
sklearn.svm._classes.SVC(17)_tol0.001
sklearn.svm._classes.SVC(17)_verbosefalse
sklearn.pipeline.Pipeline(preprocessing=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler),classifier=sklearn.svm._classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(preprocessing=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler),classifier=sklearn.svm._classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "preprocessing", "step_name": "preprocessing"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "classifier", "step_name": "classifier"}}]
sklearn.pipeline.Pipeline(preprocessing=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler),classifier=sklearn.svm._classes.SVC)(1)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler)(1)_force_int_remainder_colstrue
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler)(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler)(1)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler)(1)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "num", "step_name": "num", "argument_1": ["V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "V13", "V14", "V15", "V16", "V17", "V18", "V19", "V20", "V21", "V22", "V23", "V24", "V25", "V26", "V27", "V28", "V29", "V30", "V31", "V32", "V33", "V34", "V35", "V36", "V37", "V38", "V39", "V40", "V41", "V42", "V43", "V44", "V45", "V46", "V47", "V48", "V49", "V50", "V51", "V52", "V53", "V54", "V55", "V56", "V57", "V58", "V59", "V60", "V61", "V62", "V63", "V64", "V65", "V66", "V67", "V68", "V69", "V70", "V71", "V72"]}}]
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler)(1)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler)(1)_verbose_feature_names_outtrue

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5031 ± 0.0099
Per class
Cross-validation details (10-fold Crossvalidation)
0.9073
Per class
Cross-validation details (10-fold Crossvalidation)
0.0116 ± 0.0351
Cross-validation details (10-fold Crossvalidation)
0.248 ± 0.0151
Cross-validation details (10-fold Crossvalidation)
0.0627 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.1186 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.9373 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
2534
Per class
Cross-validation details (10-fold Crossvalidation)
0.9412
Per class
Cross-validation details (10-fold Crossvalidation)
0.9373 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.3398 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
0.529 ± 0.0108
Cross-validation details (10-fold Crossvalidation)
0.2432 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.2505 ± 0.0026
Cross-validation details (10-fold Crossvalidation)
1.0299 ± 0.0104
Cross-validation details (10-fold Crossvalidation)
0.5031 ± 0.0099
Cross-validation details (10-fold Crossvalidation)