Run
10595171

Run 10595171

Task 59 (Supervised Classification) iris Uploaded 26-11-2024 by Serdar Sahin
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing._data.StandardScaler ,classifier=sklearn.svm._classes.SVC)(1)A sequence of data transformers with an optional final predictor. `Pipeline` allows you to sequentially apply a list of transformers to preprocess the data and, if desired, conclude the sequence with a final :term:`predictor` for predictive modeling. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final :term:`estimator` only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`. For an example use case of `Pipeline` combined with :class:`~s...
sklearn.preprocessing._data.StandardScaler(20)_copytrue
sklearn.preprocessing._data.StandardScaler(20)_with_meantrue
sklearn.preprocessing._data.StandardScaler(20)_with_stdtrue
sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing._data.StandardScaler,classifier=sklearn.svm._classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing._data.StandardScaler,classifier=sklearn.svm._classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "scaler", "step_name": "scaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "classifier", "step_name": "classifier"}}]
sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing._data.StandardScaler,classifier=sklearn.svm._classes.SVC)(1)_verbosefalse
sklearn.svm._classes.SVC(17)_C1
sklearn.svm._classes.SVC(17)_break_tiesfalse
sklearn.svm._classes.SVC(17)_cache_size200
sklearn.svm._classes.SVC(17)_class_weightnull
sklearn.svm._classes.SVC(17)_coef00.0
sklearn.svm._classes.SVC(17)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(17)_degree3
sklearn.svm._classes.SVC(17)_gamma"scale"
sklearn.svm._classes.SVC(17)_kernel"linear"
sklearn.svm._classes.SVC(17)_max_iter-1
sklearn.svm._classes.SVC(17)_probabilityfalse
sklearn.svm._classes.SVC(17)_random_state42
sklearn.svm._classes.SVC(17)_shrinkingtrue
sklearn.svm._classes.SVC(17)_tol0.001
sklearn.svm._classes.SVC(17)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.97 ± 0.035
Per class
Cross-validation details (10-fold Crossvalidation)
0.9599 ± 0.048
Per class
Cross-validation details (10-fold Crossvalidation)
0.94 ± 0.0699
Cross-validation details (10-fold Crossvalidation)
0.9452 ± 0.0638
Cross-validation details (10-fold Crossvalidation)
0.0267 ± 0.0311
Cross-validation details (10-fold Crossvalidation)
0.4444
Cross-validation details (10-fold Crossvalidation)
0.96 ± 0.0466
Cross-validation details (10-fold Crossvalidation)
150
Per class
Cross-validation details (10-fold Crossvalidation)
0.9619 ± 0.0355
Per class
Cross-validation details (10-fold Crossvalidation)
0.96 ± 0.0466
Cross-validation details (10-fold Crossvalidation)
1.585
Cross-validation details (10-fold Crossvalidation)
0.06 ± 0.0699
Cross-validation details (10-fold Crossvalidation)
0.4714
Cross-validation details (10-fold Crossvalidation)
0.1633 ± 0.1231
Cross-validation details (10-fold Crossvalidation)
0.3464 ± 0.2611
Cross-validation details (10-fold Crossvalidation)
0.96 ± 0.0466
Cross-validation details (10-fold Crossvalidation)