torch.nn.Sequential.bb8de941c9933dd2(1) | Automatically created pytorch flow. |
torch.nn.Sequential.bb8de941c9933dd2(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Sequential.f92380693b8f4d0b(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}] |
torch.nn.Functional.7578fdfdf2c69a8c(1)_args | [] |
torch.nn.Functional.7578fdfdf2c69a8c(1)_function | {"oml-python:serialized_object": "methoddescriptor", "value": "torch._C.TensorBase.reshape"} |
torch.nn.Functional.7578fdfdf2c69a8c(1)_kwargs | {"shape": [-1, 1, 28, 28]} |
torch.nn.BatchNorm2d.e8a60565ecda2e96(1)_affine | true |
torch.nn.BatchNorm2d.e8a60565ecda2e96(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.e8a60565ecda2e96(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.e8a60565ecda2e96(1)_num_features | 1 |
torch.nn.BatchNorm2d.e8a60565ecda2e96(1)_track_running_stats | true |
torch.nn.Sequential.71f9f78d31694d64(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "4", "step_name": "4"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "5", "step_name": "5"}}] |
torch.nn.Conv2d.348f91a554286d86(1)_dilation | [1, 1] |
torch.nn.Conv2d.348f91a554286d86(1)_groups | 1 |
torch.nn.Conv2d.348f91a554286d86(1)_in_channels | 1 |
torch.nn.Conv2d.348f91a554286d86(1)_kernel_size | [5, 5] |
torch.nn.Conv2d.348f91a554286d86(1)_out_channels | 32 |
torch.nn.Conv2d.348f91a554286d86(1)_padding | [0, 0] |
torch.nn.Conv2d.348f91a554286d86(1)_padding_mode | "zeros" |
torch.nn.Conv2d.348f91a554286d86(1)_stride | [1, 1] |
torch.nn.LeakyReLU.b831ff72c4a0c726(1)_inplace | false |
torch.nn.LeakyReLU.b831ff72c4a0c726(1)_negative_slope | 0.01 |
torch.nn.MaxPool2d.17c711d55499efda(1)_ceil_mode | false |
torch.nn.MaxPool2d.17c711d55499efda(1)_dilation | 1 |
torch.nn.MaxPool2d.17c711d55499efda(1)_kernel_size | 2 |
torch.nn.MaxPool2d.17c711d55499efda(1)_padding | 0 |
torch.nn.MaxPool2d.17c711d55499efda(1)_return_indices | false |
torch.nn.MaxPool2d.17c711d55499efda(1)_stride | 2 |
torch.nn.Conv2d.1ade11baf92ea5b(1)_dilation | [1, 1] |
torch.nn.Conv2d.1ade11baf92ea5b(1)_groups | 1 |
torch.nn.Conv2d.1ade11baf92ea5b(1)_in_channels | 32 |
torch.nn.Conv2d.1ade11baf92ea5b(1)_kernel_size | [5, 5] |
torch.nn.Conv2d.1ade11baf92ea5b(1)_out_channels | 64 |
torch.nn.Conv2d.1ade11baf92ea5b(1)_padding | [0, 0] |
torch.nn.Conv2d.1ade11baf92ea5b(1)_padding_mode | "zeros" |
torch.nn.Conv2d.1ade11baf92ea5b(1)_stride | [1, 1] |
torch.nn.LeakyReLU.8442451d7b379f7(1)_inplace | false |
torch.nn.LeakyReLU.8442451d7b379f7(1)_negative_slope | 0.01 |
torch.nn.MaxPool2d.ee902ad3930d61fb(1)_ceil_mode | false |
torch.nn.MaxPool2d.ee902ad3930d61fb(1)_dilation | 1 |
torch.nn.MaxPool2d.ee902ad3930d61fb(1)_kernel_size | 2 |
torch.nn.MaxPool2d.ee902ad3930d61fb(1)_padding | 0 |
torch.nn.MaxPool2d.ee902ad3930d61fb(1)_return_indices | false |
torch.nn.MaxPool2d.ee902ad3930d61fb(1)_stride | 2 |
torch.nn.Sequential.8bbc0aa611080d70(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "4", "step_name": "4"}}] |
torch.nn.Functional.50003c17ef115c1b(1)_args | [] |
torch.nn.Functional.50003c17ef115c1b(1)_function | {"oml-python:serialized_object": "methoddescriptor", "value": "torch._C.TensorBase.reshape"} |
torch.nn.Functional.50003c17ef115c1b(1)_kwargs | {"shape": [-1, 1024]} |
torch.nn.Linear.f198dad83655010b(1)_in_features | 1024 |
torch.nn.Linear.f198dad83655010b(1)_out_features | 256 |
torch.nn.LeakyReLU.42c49f665c0b18c(1)_inplace | false |
torch.nn.LeakyReLU.42c49f665c0b18c(1)_negative_slope | 0.01 |
torch.nn.Dropout.2e9071c71be0667(1)_inplace | false |
torch.nn.Dropout.2e9071c71be0667(1)_p | 0.5 |
torch.nn.Linear.8024c68156c10a94(1)_in_features | 256 |
torch.nn.Linear.8024c68156c10a94(1)_out_features | 10 |