Run
10595110

Run 10595110

Task 37 (Supervised Classification) diabetes Uploaded 09-07-2024 by Madhav Prasad Ghimire
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(45)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree.
sklearn.ensemble._forest.RandomForestClassifier(45)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(45)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(45)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(45)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(45)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(45)_max_features"sqrt"
sklearn.ensemble._forest.RandomForestClassifier(45)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(45)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(45)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(45)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(45)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(45)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(45)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(45)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(45)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(45)_random_state57659
sklearn.ensemble._forest.RandomForestClassifier(45)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(45)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8288 ± 0.0434
Per class
Cross-validation details (10-fold Crossvalidation)
0.758 ± 0.0491
Per class
Cross-validation details (10-fold Crossvalidation)
0.4597 ± 0.11
Cross-validation details (10-fold Crossvalidation)
0.315 ± 0.0594
Cross-validation details (10-fold Crossvalidation)
0.3168 ± 0.0222
Cross-validation details (10-fold Crossvalidation)
0.4545 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.763 ± 0.0481
Cross-validation details (10-fold Crossvalidation)
768
Per class
Cross-validation details (10-fold Crossvalidation)
0.7575 ± 0.0537
Per class
Cross-validation details (10-fold Crossvalidation)
0.763 ± 0.0481
Cross-validation details (10-fold Crossvalidation)
0.9331 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
0.697 ± 0.049
Cross-validation details (10-fold Crossvalidation)
0.4766 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.3985 ± 0.0263
Cross-validation details (10-fold Crossvalidation)
0.836 ± 0.0558
Cross-validation details (10-fold Crossvalidation)
0.7219 ± 0.0522
Cross-validation details (10-fold Crossvalidation)