torch.nn.Model2.a524e7d6f2f5accd(1) | Automatically created pytorch flow. |
torch.nn.Sequential.dbfe2cf7f89b11ad(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "4", "step_name": "4"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "5", "step_name": "5"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "6", "step_name": "6"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "7", "step_name": "7"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "8", "step_name": "8"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "9", "step_name": "9"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "10", "step_name": "10"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "11", "step_name": "11"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "12", "step_name": "12"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "13", "step_name": "13"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "14", "step_name": "14"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "15", "step_name": "15"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "16", "step_name": "16"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "17", "step_name": "17"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "18", "step_name": "18"}}] |
torch.nn.Conv2dNormActivation.3d8f7a9ec382ec2e(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.c1be8b49907a3e61(1)_bias | null |
torch.nn.Conv2d.c1be8b49907a3e61(1)_dilation | [1, 1] |
torch.nn.Conv2d.c1be8b49907a3e61(1)_groups | 1 |
torch.nn.Conv2d.c1be8b49907a3e61(1)_in_channels | 3 |
torch.nn.Conv2d.c1be8b49907a3e61(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.c1be8b49907a3e61(1)_out_channels | 32 |
torch.nn.Conv2d.c1be8b49907a3e61(1)_padding | [1, 1] |
torch.nn.Conv2d.c1be8b49907a3e61(1)_padding_mode | "zeros" |
torch.nn.Conv2d.c1be8b49907a3e61(1)_stride | [2, 2] |
torch.nn.BatchNorm2d.191befbfe9063fcf(1)_affine | true |
torch.nn.BatchNorm2d.191befbfe9063fcf(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.191befbfe9063fcf(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.191befbfe9063fcf(1)_num_features | 32 |
torch.nn.BatchNorm2d.191befbfe9063fcf(1)_track_running_stats | true |
torch.nn.ReLU6.44fb1cc811031fc9(1)_inplace | true |
torch.nn.InvertedResidual.e9523a34ff3f8168(1)_stride | 1 |
torch.nn.Sequential.ae567afc3109e376(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2dNormActivation.5802bd5ea4a59aff(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.bc38d1657157ffee(1)_bias | null |
torch.nn.Conv2d.bc38d1657157ffee(1)_dilation | [1, 1] |
torch.nn.Conv2d.bc38d1657157ffee(1)_groups | 32 |
torch.nn.Conv2d.bc38d1657157ffee(1)_in_channels | 32 |
torch.nn.Conv2d.bc38d1657157ffee(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.bc38d1657157ffee(1)_out_channels | 32 |
torch.nn.Conv2d.bc38d1657157ffee(1)_padding | [1, 1] |
torch.nn.Conv2d.bc38d1657157ffee(1)_padding_mode | "zeros" |
torch.nn.Conv2d.bc38d1657157ffee(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.350eee6951fd92eb(1)_affine | true |
torch.nn.BatchNorm2d.350eee6951fd92eb(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.350eee6951fd92eb(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.350eee6951fd92eb(1)_num_features | 32 |
torch.nn.BatchNorm2d.350eee6951fd92eb(1)_track_running_stats | true |
torch.nn.ReLU6.a8a4e41b5565ea3f(1)_inplace | true |
torch.nn.Conv2d.6f99b87d9914ae79(1)_bias | null |
torch.nn.Conv2d.6f99b87d9914ae79(1)_dilation | [1, 1] |
torch.nn.Conv2d.6f99b87d9914ae79(1)_groups | 1 |
torch.nn.Conv2d.6f99b87d9914ae79(1)_in_channels | 32 |
torch.nn.Conv2d.6f99b87d9914ae79(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.6f99b87d9914ae79(1)_out_channels | 16 |
torch.nn.Conv2d.6f99b87d9914ae79(1)_padding | [0, 0] |
torch.nn.Conv2d.6f99b87d9914ae79(1)_padding_mode | "zeros" |
torch.nn.Conv2d.6f99b87d9914ae79(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.3ca8176f25303155(1)_affine | true |
torch.nn.BatchNorm2d.3ca8176f25303155(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.3ca8176f25303155(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.3ca8176f25303155(1)_num_features | 16 |
torch.nn.BatchNorm2d.3ca8176f25303155(1)_track_running_stats | true |
torch.nn.InvertedResidual.d22dd78f84c40331(1)_stride | 1 |
torch.nn.Sequential.1feda6ba089730b(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.7d8d8dc642ed62dc(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.456a650dc0562c5e(1)_bias | null |
torch.nn.Conv2d.456a650dc0562c5e(1)_dilation | [1, 1] |
torch.nn.Conv2d.456a650dc0562c5e(1)_groups | 1 |
torch.nn.Conv2d.456a650dc0562c5e(1)_in_channels | 64 |
torch.nn.Conv2d.456a650dc0562c5e(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.456a650dc0562c5e(1)_out_channels | 384 |
torch.nn.Conv2d.456a650dc0562c5e(1)_padding | [0, 0] |
torch.nn.Conv2d.456a650dc0562c5e(1)_padding_mode | "zeros" |
torch.nn.Conv2d.456a650dc0562c5e(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.f13c2b3649629e8c(1)_affine | true |
torch.nn.BatchNorm2d.f13c2b3649629e8c(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.f13c2b3649629e8c(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.f13c2b3649629e8c(1)_num_features | 384 |
torch.nn.BatchNorm2d.f13c2b3649629e8c(1)_track_running_stats | true |
torch.nn.ReLU6.574190a6ede0d7af(1)_inplace | true |
torch.nn.Conv2dNormActivation.3ff1d31fb345daba(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.d743748d114b4f7e(1)_bias | null |
torch.nn.Conv2d.d743748d114b4f7e(1)_dilation | [1, 1] |
torch.nn.Conv2d.d743748d114b4f7e(1)_groups | 384 |
torch.nn.Conv2d.d743748d114b4f7e(1)_in_channels | 384 |
torch.nn.Conv2d.d743748d114b4f7e(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.d743748d114b4f7e(1)_out_channels | 384 |
torch.nn.Conv2d.d743748d114b4f7e(1)_padding | [1, 1] |
torch.nn.Conv2d.d743748d114b4f7e(1)_padding_mode | "zeros" |
torch.nn.Conv2d.d743748d114b4f7e(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.61ba1f2cab2a09f4(1)_affine | true |
torch.nn.BatchNorm2d.61ba1f2cab2a09f4(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.61ba1f2cab2a09f4(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.61ba1f2cab2a09f4(1)_num_features | 384 |
torch.nn.BatchNorm2d.61ba1f2cab2a09f4(1)_track_running_stats | true |
torch.nn.ReLU6.3eb4665cc8da968f(1)_inplace | true |
torch.nn.Conv2d.d59817fc56f92fc4(1)_bias | null |
torch.nn.Conv2d.d59817fc56f92fc4(1)_dilation | [1, 1] |
torch.nn.Conv2d.d59817fc56f92fc4(1)_groups | 1 |
torch.nn.Conv2d.d59817fc56f92fc4(1)_in_channels | 384 |
torch.nn.Conv2d.d59817fc56f92fc4(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.d59817fc56f92fc4(1)_out_channels | 64 |
torch.nn.Conv2d.d59817fc56f92fc4(1)_padding | [0, 0] |
torch.nn.Conv2d.d59817fc56f92fc4(1)_padding_mode | "zeros" |
torch.nn.Conv2d.d59817fc56f92fc4(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.9f812263897f2cdf(1)_affine | true |
torch.nn.BatchNorm2d.9f812263897f2cdf(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.9f812263897f2cdf(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.9f812263897f2cdf(1)_num_features | 64 |
torch.nn.BatchNorm2d.9f812263897f2cdf(1)_track_running_stats | true |
torch.nn.InvertedResidual.4f05d2363de136fb(1)_stride | 1 |
torch.nn.Sequential.504b430bab24f666(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.e162b216f2453abd(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.dbaf726aa4fe9f46(1)_bias | null |
torch.nn.Conv2d.dbaf726aa4fe9f46(1)_dilation | [1, 1] |
torch.nn.Conv2d.dbaf726aa4fe9f46(1)_groups | 1 |
torch.nn.Conv2d.dbaf726aa4fe9f46(1)_in_channels | 64 |
torch.nn.Conv2d.dbaf726aa4fe9f46(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.dbaf726aa4fe9f46(1)_out_channels | 384 |
torch.nn.Conv2d.dbaf726aa4fe9f46(1)_padding | [0, 0] |
torch.nn.Conv2d.dbaf726aa4fe9f46(1)_padding_mode | "zeros" |
torch.nn.Conv2d.dbaf726aa4fe9f46(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.88572129d04cd216(1)_affine | true |
torch.nn.BatchNorm2d.88572129d04cd216(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.88572129d04cd216(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.88572129d04cd216(1)_num_features | 384 |
torch.nn.BatchNorm2d.88572129d04cd216(1)_track_running_stats | true |
torch.nn.ReLU6.4c3a1708a930a895(1)_inplace | true |
torch.nn.Conv2dNormActivation.a886fb3b16da161(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.bc110042fbb6a1fa(1)_bias | null |
torch.nn.Conv2d.bc110042fbb6a1fa(1)_dilation | [1, 1] |
torch.nn.Conv2d.bc110042fbb6a1fa(1)_groups | 384 |
torch.nn.Conv2d.bc110042fbb6a1fa(1)_in_channels | 384 |
torch.nn.Conv2d.bc110042fbb6a1fa(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.bc110042fbb6a1fa(1)_out_channels | 384 |
torch.nn.Conv2d.bc110042fbb6a1fa(1)_padding | [1, 1] |
torch.nn.Conv2d.bc110042fbb6a1fa(1)_padding_mode | "zeros" |
torch.nn.Conv2d.bc110042fbb6a1fa(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.48ce98e6cf2dfdb2(1)_affine | true |
torch.nn.BatchNorm2d.48ce98e6cf2dfdb2(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.48ce98e6cf2dfdb2(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.48ce98e6cf2dfdb2(1)_num_features | 384 |
torch.nn.BatchNorm2d.48ce98e6cf2dfdb2(1)_track_running_stats | true |
torch.nn.ReLU6.22e66080535a5381(1)_inplace | true |
torch.nn.Conv2d.35f4812f780f75d3(1)_bias | null |
torch.nn.Conv2d.35f4812f780f75d3(1)_dilation | [1, 1] |
torch.nn.Conv2d.35f4812f780f75d3(1)_groups | 1 |
torch.nn.Conv2d.35f4812f780f75d3(1)_in_channels | 384 |
torch.nn.Conv2d.35f4812f780f75d3(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.35f4812f780f75d3(1)_out_channels | 96 |
torch.nn.Conv2d.35f4812f780f75d3(1)_padding | [0, 0] |
torch.nn.Conv2d.35f4812f780f75d3(1)_padding_mode | "zeros" |
torch.nn.Conv2d.35f4812f780f75d3(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.99331f707e316ef9(1)_affine | true |
torch.nn.BatchNorm2d.99331f707e316ef9(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.99331f707e316ef9(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.99331f707e316ef9(1)_num_features | 96 |
torch.nn.BatchNorm2d.99331f707e316ef9(1)_track_running_stats | true |
torch.nn.InvertedResidual.87560cb09670e0df(1)_stride | 1 |
torch.nn.Sequential.3dc46e015fabc6bf(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.859c92051ff3efc4(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.1e08e4b35f6e2295(1)_bias | null |
torch.nn.Conv2d.1e08e4b35f6e2295(1)_dilation | [1, 1] |
torch.nn.Conv2d.1e08e4b35f6e2295(1)_groups | 1 |
torch.nn.Conv2d.1e08e4b35f6e2295(1)_in_channels | 96 |
torch.nn.Conv2d.1e08e4b35f6e2295(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.1e08e4b35f6e2295(1)_out_channels | 576 |
torch.nn.Conv2d.1e08e4b35f6e2295(1)_padding | [0, 0] |
torch.nn.Conv2d.1e08e4b35f6e2295(1)_padding_mode | "zeros" |
torch.nn.Conv2d.1e08e4b35f6e2295(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.1211121d1916a3d6(1)_affine | true |
torch.nn.BatchNorm2d.1211121d1916a3d6(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.1211121d1916a3d6(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.1211121d1916a3d6(1)_num_features | 576 |
torch.nn.BatchNorm2d.1211121d1916a3d6(1)_track_running_stats | true |
torch.nn.ReLU6.9d3f7d1bc52a8930(1)_inplace | true |
torch.nn.Conv2dNormActivation.b7f5ae9020afca80(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.c00f0fa89c45cac8(1)_bias | null |
torch.nn.Conv2d.c00f0fa89c45cac8(1)_dilation | [1, 1] |
torch.nn.Conv2d.c00f0fa89c45cac8(1)_groups | 576 |
torch.nn.Conv2d.c00f0fa89c45cac8(1)_in_channels | 576 |
torch.nn.Conv2d.c00f0fa89c45cac8(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.c00f0fa89c45cac8(1)_out_channels | 576 |
torch.nn.Conv2d.c00f0fa89c45cac8(1)_padding | [1, 1] |
torch.nn.Conv2d.c00f0fa89c45cac8(1)_padding_mode | "zeros" |
torch.nn.Conv2d.c00f0fa89c45cac8(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.e379caa347d56f8e(1)_affine | true |
torch.nn.BatchNorm2d.e379caa347d56f8e(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.e379caa347d56f8e(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.e379caa347d56f8e(1)_num_features | 576 |
torch.nn.BatchNorm2d.e379caa347d56f8e(1)_track_running_stats | true |
torch.nn.ReLU6.910c67b612b80c2d(1)_inplace | true |
torch.nn.Conv2d.9fb1a0b175a6b99b(1)_bias | null |
torch.nn.Conv2d.9fb1a0b175a6b99b(1)_dilation | [1, 1] |
torch.nn.Conv2d.9fb1a0b175a6b99b(1)_groups | 1 |
torch.nn.Conv2d.9fb1a0b175a6b99b(1)_in_channels | 576 |
torch.nn.Conv2d.9fb1a0b175a6b99b(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.9fb1a0b175a6b99b(1)_out_channels | 96 |
torch.nn.Conv2d.9fb1a0b175a6b99b(1)_padding | [0, 0] |
torch.nn.Conv2d.9fb1a0b175a6b99b(1)_padding_mode | "zeros" |
torch.nn.Conv2d.9fb1a0b175a6b99b(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.b40b5e7a895cf910(1)_affine | true |
torch.nn.BatchNorm2d.b40b5e7a895cf910(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.b40b5e7a895cf910(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.b40b5e7a895cf910(1)_num_features | 96 |
torch.nn.BatchNorm2d.b40b5e7a895cf910(1)_track_running_stats | true |
torch.nn.InvertedResidual.b3eb152be85d5575(1)_stride | 1 |
torch.nn.Sequential.9ee44b0b616b8f5(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.53e44296e069eb9c(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.5bd85730405f2e60(1)_bias | null |
torch.nn.Conv2d.5bd85730405f2e60(1)_dilation | [1, 1] |
torch.nn.Conv2d.5bd85730405f2e60(1)_groups | 1 |
torch.nn.Conv2d.5bd85730405f2e60(1)_in_channels | 96 |
torch.nn.Conv2d.5bd85730405f2e60(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.5bd85730405f2e60(1)_out_channels | 576 |
torch.nn.Conv2d.5bd85730405f2e60(1)_padding | [0, 0] |
torch.nn.Conv2d.5bd85730405f2e60(1)_padding_mode | "zeros" |
torch.nn.Conv2d.5bd85730405f2e60(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.5da6c4321903fbd3(1)_affine | true |
torch.nn.BatchNorm2d.5da6c4321903fbd3(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.5da6c4321903fbd3(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.5da6c4321903fbd3(1)_num_features | 576 |
torch.nn.BatchNorm2d.5da6c4321903fbd3(1)_track_running_stats | true |
torch.nn.ReLU6.741b0e1b239779a(1)_inplace | true |
torch.nn.Conv2dNormActivation.3abff818eae04c86(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.7eead612cda4d7e0(1)_bias | null |
torch.nn.Conv2d.7eead612cda4d7e0(1)_dilation | [1, 1] |
torch.nn.Conv2d.7eead612cda4d7e0(1)_groups | 576 |
torch.nn.Conv2d.7eead612cda4d7e0(1)_in_channels | 576 |
torch.nn.Conv2d.7eead612cda4d7e0(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.7eead612cda4d7e0(1)_out_channels | 576 |
torch.nn.Conv2d.7eead612cda4d7e0(1)_padding | [1, 1] |
torch.nn.Conv2d.7eead612cda4d7e0(1)_padding_mode | "zeros" |
torch.nn.Conv2d.7eead612cda4d7e0(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.bb1a2bb1eccda0d9(1)_affine | true |
torch.nn.BatchNorm2d.bb1a2bb1eccda0d9(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.bb1a2bb1eccda0d9(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.bb1a2bb1eccda0d9(1)_num_features | 576 |
torch.nn.BatchNorm2d.bb1a2bb1eccda0d9(1)_track_running_stats | true |
torch.nn.ReLU6.b31e01e44c9c6459(1)_inplace | true |
torch.nn.Conv2d.24935440d761f8f6(1)_bias | null |
torch.nn.Conv2d.24935440d761f8f6(1)_dilation | [1, 1] |
torch.nn.Conv2d.24935440d761f8f6(1)_groups | 1 |
torch.nn.Conv2d.24935440d761f8f6(1)_in_channels | 576 |
torch.nn.Conv2d.24935440d761f8f6(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.24935440d761f8f6(1)_out_channels | 96 |
torch.nn.Conv2d.24935440d761f8f6(1)_padding | [0, 0] |
torch.nn.Conv2d.24935440d761f8f6(1)_padding_mode | "zeros" |
torch.nn.Conv2d.24935440d761f8f6(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.dbfa9986ba0e0386(1)_affine | true |
torch.nn.BatchNorm2d.dbfa9986ba0e0386(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.dbfa9986ba0e0386(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.dbfa9986ba0e0386(1)_num_features | 96 |
torch.nn.BatchNorm2d.dbfa9986ba0e0386(1)_track_running_stats | true |
torch.nn.InvertedResidual.bd2ea58c1d8d8530(1)_stride | 2 |
torch.nn.Sequential.93a749eba9ebb40e(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.84fea656f74347bb(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.b5cb85426f5ac7a7(1)_bias | null |
torch.nn.Conv2d.b5cb85426f5ac7a7(1)_dilation | [1, 1] |
torch.nn.Conv2d.b5cb85426f5ac7a7(1)_groups | 1 |
torch.nn.Conv2d.b5cb85426f5ac7a7(1)_in_channels | 96 |
torch.nn.Conv2d.b5cb85426f5ac7a7(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.b5cb85426f5ac7a7(1)_out_channels | 576 |
torch.nn.Conv2d.b5cb85426f5ac7a7(1)_padding | [0, 0] |
torch.nn.Conv2d.b5cb85426f5ac7a7(1)_padding_mode | "zeros" |
torch.nn.Conv2d.b5cb85426f5ac7a7(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.c4b10cb1c2c3a4c1(1)_affine | true |
torch.nn.BatchNorm2d.c4b10cb1c2c3a4c1(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.c4b10cb1c2c3a4c1(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.c4b10cb1c2c3a4c1(1)_num_features | 576 |
torch.nn.BatchNorm2d.c4b10cb1c2c3a4c1(1)_track_running_stats | true |
torch.nn.ReLU6.61877bcef9ca3b35(1)_inplace | true |
torch.nn.Conv2dNormActivation.dc7fddc0327b6aaf(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.dad6facea9970a7d(1)_bias | null |
torch.nn.Conv2d.dad6facea9970a7d(1)_dilation | [1, 1] |
torch.nn.Conv2d.dad6facea9970a7d(1)_groups | 576 |
torch.nn.Conv2d.dad6facea9970a7d(1)_in_channels | 576 |
torch.nn.Conv2d.dad6facea9970a7d(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.dad6facea9970a7d(1)_out_channels | 576 |
torch.nn.Conv2d.dad6facea9970a7d(1)_padding | [1, 1] |
torch.nn.Conv2d.dad6facea9970a7d(1)_padding_mode | "zeros" |
torch.nn.Conv2d.dad6facea9970a7d(1)_stride | [2, 2] |
torch.nn.BatchNorm2d.f3369c71212c2ce8(1)_affine | true |
torch.nn.BatchNorm2d.f3369c71212c2ce8(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.f3369c71212c2ce8(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.f3369c71212c2ce8(1)_num_features | 576 |
torch.nn.BatchNorm2d.f3369c71212c2ce8(1)_track_running_stats | true |
torch.nn.ReLU6.d9d638aa144c25a6(1)_inplace | true |
torch.nn.Conv2d.a1e0a65ad09e29(1)_bias | null |
torch.nn.Conv2d.a1e0a65ad09e29(1)_dilation | [1, 1] |
torch.nn.Conv2d.a1e0a65ad09e29(1)_groups | 1 |
torch.nn.Conv2d.a1e0a65ad09e29(1)_in_channels | 576 |
torch.nn.Conv2d.a1e0a65ad09e29(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.a1e0a65ad09e29(1)_out_channels | 160 |
torch.nn.Conv2d.a1e0a65ad09e29(1)_padding | [0, 0] |
torch.nn.Conv2d.a1e0a65ad09e29(1)_padding_mode | "zeros" |
torch.nn.Conv2d.a1e0a65ad09e29(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.eae253ecc577e032(1)_affine | true |
torch.nn.BatchNorm2d.eae253ecc577e032(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.eae253ecc577e032(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.eae253ecc577e032(1)_num_features | 160 |
torch.nn.BatchNorm2d.eae253ecc577e032(1)_track_running_stats | true |
torch.nn.InvertedResidual.490535bfb0a86714(1)_stride | 1 |
torch.nn.Sequential.13b2eaf67fa3be2a(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.d12a7e8d4ce9e077(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.c06e3e8ef4be9c4c(1)_bias | null |
torch.nn.Conv2d.c06e3e8ef4be9c4c(1)_dilation | [1, 1] |
torch.nn.Conv2d.c06e3e8ef4be9c4c(1)_groups | 1 |
torch.nn.Conv2d.c06e3e8ef4be9c4c(1)_in_channels | 160 |
torch.nn.Conv2d.c06e3e8ef4be9c4c(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.c06e3e8ef4be9c4c(1)_out_channels | 960 |
torch.nn.Conv2d.c06e3e8ef4be9c4c(1)_padding | [0, 0] |
torch.nn.Conv2d.c06e3e8ef4be9c4c(1)_padding_mode | "zeros" |
torch.nn.Conv2d.c06e3e8ef4be9c4c(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.fc48492d1d1ab61a(1)_affine | true |
torch.nn.BatchNorm2d.fc48492d1d1ab61a(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.fc48492d1d1ab61a(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.fc48492d1d1ab61a(1)_num_features | 960 |
torch.nn.BatchNorm2d.fc48492d1d1ab61a(1)_track_running_stats | true |
torch.nn.ReLU6.5c50c855400fc4b9(1)_inplace | true |
torch.nn.Conv2dNormActivation.89ec085886de20cc(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.20fa48792ee69f07(1)_bias | null |
torch.nn.Conv2d.20fa48792ee69f07(1)_dilation | [1, 1] |
torch.nn.Conv2d.20fa48792ee69f07(1)_groups | 960 |
torch.nn.Conv2d.20fa48792ee69f07(1)_in_channels | 960 |
torch.nn.Conv2d.20fa48792ee69f07(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.20fa48792ee69f07(1)_out_channels | 960 |
torch.nn.Conv2d.20fa48792ee69f07(1)_padding | [1, 1] |
torch.nn.Conv2d.20fa48792ee69f07(1)_padding_mode | "zeros" |
torch.nn.Conv2d.20fa48792ee69f07(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.a98e76a3156f7667(1)_affine | true |
torch.nn.BatchNorm2d.a98e76a3156f7667(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.a98e76a3156f7667(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.a98e76a3156f7667(1)_num_features | 960 |
torch.nn.BatchNorm2d.a98e76a3156f7667(1)_track_running_stats | true |
torch.nn.ReLU6.3c6212731d542720(1)_inplace | true |
torch.nn.Conv2d.d3e5149cb668f327(1)_bias | null |
torch.nn.Conv2d.d3e5149cb668f327(1)_dilation | [1, 1] |
torch.nn.Conv2d.d3e5149cb668f327(1)_groups | 1 |
torch.nn.Conv2d.d3e5149cb668f327(1)_in_channels | 960 |
torch.nn.Conv2d.d3e5149cb668f327(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.d3e5149cb668f327(1)_out_channels | 160 |
torch.nn.Conv2d.d3e5149cb668f327(1)_padding | [0, 0] |
torch.nn.Conv2d.d3e5149cb668f327(1)_padding_mode | "zeros" |
torch.nn.Conv2d.d3e5149cb668f327(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.df9da593764dbebd(1)_affine | true |
torch.nn.BatchNorm2d.df9da593764dbebd(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.df9da593764dbebd(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.df9da593764dbebd(1)_num_features | 160 |
torch.nn.BatchNorm2d.df9da593764dbebd(1)_track_running_stats | true |
torch.nn.InvertedResidual.c719f67a5dd0d4f4(1)_stride | 1 |
torch.nn.Sequential.e12322a4d83eef79(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.30e9c76e56ea3c1f(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.a4e30a58a0082e6(1)_bias | null |
torch.nn.Conv2d.a4e30a58a0082e6(1)_dilation | [1, 1] |
torch.nn.Conv2d.a4e30a58a0082e6(1)_groups | 1 |
torch.nn.Conv2d.a4e30a58a0082e6(1)_in_channels | 160 |
torch.nn.Conv2d.a4e30a58a0082e6(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.a4e30a58a0082e6(1)_out_channels | 960 |
torch.nn.Conv2d.a4e30a58a0082e6(1)_padding | [0, 0] |
torch.nn.Conv2d.a4e30a58a0082e6(1)_padding_mode | "zeros" |
torch.nn.Conv2d.a4e30a58a0082e6(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.d99fb5f6cdcb91b1(1)_affine | true |
torch.nn.BatchNorm2d.d99fb5f6cdcb91b1(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.d99fb5f6cdcb91b1(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.d99fb5f6cdcb91b1(1)_num_features | 960 |
torch.nn.BatchNorm2d.d99fb5f6cdcb91b1(1)_track_running_stats | true |
torch.nn.ReLU6.50288fb23bc3c682(1)_inplace | true |
torch.nn.Conv2dNormActivation.1314a021a270159a(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.5e357b2899650bfe(1)_bias | null |
torch.nn.Conv2d.5e357b2899650bfe(1)_dilation | [1, 1] |
torch.nn.Conv2d.5e357b2899650bfe(1)_groups | 960 |
torch.nn.Conv2d.5e357b2899650bfe(1)_in_channels | 960 |
torch.nn.Conv2d.5e357b2899650bfe(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.5e357b2899650bfe(1)_out_channels | 960 |
torch.nn.Conv2d.5e357b2899650bfe(1)_padding | [1, 1] |
torch.nn.Conv2d.5e357b2899650bfe(1)_padding_mode | "zeros" |
torch.nn.Conv2d.5e357b2899650bfe(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.cb55104a942370c9(1)_affine | true |
torch.nn.BatchNorm2d.cb55104a942370c9(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.cb55104a942370c9(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.cb55104a942370c9(1)_num_features | 960 |
torch.nn.BatchNorm2d.cb55104a942370c9(1)_track_running_stats | true |
torch.nn.ReLU6.37c9cc82a3ab22fd(1)_inplace | true |
torch.nn.Conv2d.6169b31edfb7ab41(1)_bias | null |
torch.nn.Conv2d.6169b31edfb7ab41(1)_dilation | [1, 1] |
torch.nn.Conv2d.6169b31edfb7ab41(1)_groups | 1 |
torch.nn.Conv2d.6169b31edfb7ab41(1)_in_channels | 960 |
torch.nn.Conv2d.6169b31edfb7ab41(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.6169b31edfb7ab41(1)_out_channels | 160 |
torch.nn.Conv2d.6169b31edfb7ab41(1)_padding | [0, 0] |
torch.nn.Conv2d.6169b31edfb7ab41(1)_padding_mode | "zeros" |
torch.nn.Conv2d.6169b31edfb7ab41(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.bce8c54d8442d1df(1)_affine | true |
torch.nn.BatchNorm2d.bce8c54d8442d1df(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.bce8c54d8442d1df(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.bce8c54d8442d1df(1)_num_features | 160 |
torch.nn.BatchNorm2d.bce8c54d8442d1df(1)_track_running_stats | true |
torch.nn.InvertedResidual.9d1e73b431618f41(1)_stride | 1 |
torch.nn.Sequential.1de5464ec158f6c6(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.e46358e6f6b06724(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.e4959ee8df08451e(1)_bias | null |
torch.nn.Conv2d.e4959ee8df08451e(1)_dilation | [1, 1] |
torch.nn.Conv2d.e4959ee8df08451e(1)_groups | 1 |
torch.nn.Conv2d.e4959ee8df08451e(1)_in_channels | 160 |
torch.nn.Conv2d.e4959ee8df08451e(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.e4959ee8df08451e(1)_out_channels | 960 |
torch.nn.Conv2d.e4959ee8df08451e(1)_padding | [0, 0] |
torch.nn.Conv2d.e4959ee8df08451e(1)_padding_mode | "zeros" |
torch.nn.Conv2d.e4959ee8df08451e(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.be37d6d2ce4e8f9c(1)_affine | true |
torch.nn.BatchNorm2d.be37d6d2ce4e8f9c(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.be37d6d2ce4e8f9c(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.be37d6d2ce4e8f9c(1)_num_features | 960 |
torch.nn.BatchNorm2d.be37d6d2ce4e8f9c(1)_track_running_stats | true |
torch.nn.ReLU6.624cc0168c93deb5(1)_inplace | true |
torch.nn.Conv2dNormActivation.1e45572db3723ec(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.bbb7830b8f50afa(1)_bias | null |
torch.nn.Conv2d.bbb7830b8f50afa(1)_dilation | [1, 1] |
torch.nn.Conv2d.bbb7830b8f50afa(1)_groups | 960 |
torch.nn.Conv2d.bbb7830b8f50afa(1)_in_channels | 960 |
torch.nn.Conv2d.bbb7830b8f50afa(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.bbb7830b8f50afa(1)_out_channels | 960 |
torch.nn.Conv2d.bbb7830b8f50afa(1)_padding | [1, 1] |
torch.nn.Conv2d.bbb7830b8f50afa(1)_padding_mode | "zeros" |
torch.nn.Conv2d.bbb7830b8f50afa(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.83003871ec03263d(1)_affine | true |
torch.nn.BatchNorm2d.83003871ec03263d(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.83003871ec03263d(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.83003871ec03263d(1)_num_features | 960 |
torch.nn.BatchNorm2d.83003871ec03263d(1)_track_running_stats | true |
torch.nn.ReLU6.9bd7ba21cfed5c0d(1)_inplace | true |
torch.nn.Conv2d.a0d078f5c309e033(1)_bias | null |
torch.nn.Conv2d.a0d078f5c309e033(1)_dilation | [1, 1] |
torch.nn.Conv2d.a0d078f5c309e033(1)_groups | 1 |
torch.nn.Conv2d.a0d078f5c309e033(1)_in_channels | 960 |
torch.nn.Conv2d.a0d078f5c309e033(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.a0d078f5c309e033(1)_out_channels | 320 |
torch.nn.Conv2d.a0d078f5c309e033(1)_padding | [0, 0] |
torch.nn.Conv2d.a0d078f5c309e033(1)_padding_mode | "zeros" |
torch.nn.Conv2d.a0d078f5c309e033(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.a5fbd4f8b96bc3c5(1)_affine | true |
torch.nn.BatchNorm2d.a5fbd4f8b96bc3c5(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.a5fbd4f8b96bc3c5(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.a5fbd4f8b96bc3c5(1)_num_features | 320 |
torch.nn.BatchNorm2d.a5fbd4f8b96bc3c5(1)_track_running_stats | true |
torch.nn.Conv2dNormActivation.d94fdb9a96679bc7(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.f39d0f8aff6cddc0(1)_bias | null |
torch.nn.Conv2d.f39d0f8aff6cddc0(1)_dilation | [1, 1] |
torch.nn.Conv2d.f39d0f8aff6cddc0(1)_groups | 1 |
torch.nn.Conv2d.f39d0f8aff6cddc0(1)_in_channels | 320 |
torch.nn.Conv2d.f39d0f8aff6cddc0(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.f39d0f8aff6cddc0(1)_out_channels | 1280 |
torch.nn.Conv2d.f39d0f8aff6cddc0(1)_padding | [0, 0] |
torch.nn.Conv2d.f39d0f8aff6cddc0(1)_padding_mode | "zeros" |
torch.nn.Conv2d.f39d0f8aff6cddc0(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.873890341209d184(1)_affine | true |
torch.nn.BatchNorm2d.873890341209d184(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.873890341209d184(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.873890341209d184(1)_num_features | 1280 |
torch.nn.BatchNorm2d.873890341209d184(1)_track_running_stats | true |
torch.nn.ReLU6.cdfce78a1b6145(1)_inplace | true |
torch.nn.InvertedResidual.74d2207388458504(1)_stride | 2 |
torch.nn.Sequential.608e1c5438d0819f(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.17f92cdfafeea555(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.a849dffca73b4454(1)_bias | null |
torch.nn.Conv2d.a849dffca73b4454(1)_dilation | [1, 1] |
torch.nn.Conv2d.a849dffca73b4454(1)_groups | 1 |
torch.nn.Conv2d.a849dffca73b4454(1)_in_channels | 16 |
torch.nn.Conv2d.a849dffca73b4454(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.a849dffca73b4454(1)_out_channels | 96 |
torch.nn.Conv2d.a849dffca73b4454(1)_padding | [0, 0] |
torch.nn.Conv2d.a849dffca73b4454(1)_padding_mode | "zeros" |
torch.nn.Conv2d.a849dffca73b4454(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.e62927518912e53c(1)_affine | true |
torch.nn.BatchNorm2d.e62927518912e53c(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.e62927518912e53c(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.e62927518912e53c(1)_num_features | 96 |
torch.nn.BatchNorm2d.e62927518912e53c(1)_track_running_stats | true |
torch.nn.ReLU6.3d9fd273ad2bf715(1)_inplace | true |
torch.nn.Conv2dNormActivation.4b323dcb98e97de1(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.2ac288da23af4133(1)_bias | null |
torch.nn.Conv2d.2ac288da23af4133(1)_dilation | [1, 1] |
torch.nn.Conv2d.2ac288da23af4133(1)_groups | 96 |
torch.nn.Conv2d.2ac288da23af4133(1)_in_channels | 96 |
torch.nn.Conv2d.2ac288da23af4133(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.2ac288da23af4133(1)_out_channels | 96 |
torch.nn.Conv2d.2ac288da23af4133(1)_padding | [1, 1] |
torch.nn.Conv2d.2ac288da23af4133(1)_padding_mode | "zeros" |
torch.nn.Conv2d.2ac288da23af4133(1)_stride | [2, 2] |
torch.nn.BatchNorm2d.7d8f275d707c97f3(1)_affine | true |
torch.nn.BatchNorm2d.7d8f275d707c97f3(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.7d8f275d707c97f3(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.7d8f275d707c97f3(1)_num_features | 96 |
torch.nn.BatchNorm2d.7d8f275d707c97f3(1)_track_running_stats | true |
torch.nn.ReLU6.e34213c0d2192ef7(1)_inplace | true |
torch.nn.Conv2d.c2430ef11ac358df(1)_bias | null |
torch.nn.Conv2d.c2430ef11ac358df(1)_dilation | [1, 1] |
torch.nn.Conv2d.c2430ef11ac358df(1)_groups | 1 |
torch.nn.Conv2d.c2430ef11ac358df(1)_in_channels | 96 |
torch.nn.Conv2d.c2430ef11ac358df(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.c2430ef11ac358df(1)_out_channels | 24 |
torch.nn.Conv2d.c2430ef11ac358df(1)_padding | [0, 0] |
torch.nn.Conv2d.c2430ef11ac358df(1)_padding_mode | "zeros" |
torch.nn.Conv2d.c2430ef11ac358df(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.ecf3225f6969136c(1)_affine | true |
torch.nn.BatchNorm2d.ecf3225f6969136c(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.ecf3225f6969136c(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.ecf3225f6969136c(1)_num_features | 24 |
torch.nn.BatchNorm2d.ecf3225f6969136c(1)_track_running_stats | true |
torch.nn.InvertedResidual.3c84d50f34a346fc(1)_stride | 1 |
torch.nn.Sequential.23602e30853e250f(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.19d717a7c3355724(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.d45748de7bae019a(1)_bias | null |
torch.nn.Conv2d.d45748de7bae019a(1)_dilation | [1, 1] |
torch.nn.Conv2d.d45748de7bae019a(1)_groups | 1 |
torch.nn.Conv2d.d45748de7bae019a(1)_in_channels | 24 |
torch.nn.Conv2d.d45748de7bae019a(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.d45748de7bae019a(1)_out_channels | 144 |
torch.nn.Conv2d.d45748de7bae019a(1)_padding | [0, 0] |
torch.nn.Conv2d.d45748de7bae019a(1)_padding_mode | "zeros" |
torch.nn.Conv2d.d45748de7bae019a(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.96d0b6f93f120f8b(1)_affine | true |
torch.nn.BatchNorm2d.96d0b6f93f120f8b(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.96d0b6f93f120f8b(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.96d0b6f93f120f8b(1)_num_features | 144 |
torch.nn.BatchNorm2d.96d0b6f93f120f8b(1)_track_running_stats | true |
torch.nn.ReLU6.5ff31a8df12638a8(1)_inplace | true |
torch.nn.Conv2dNormActivation.ba55d6b731f9faeb(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.4b9f3d3ba2be9a40(1)_bias | null |
torch.nn.Conv2d.4b9f3d3ba2be9a40(1)_dilation | [1, 1] |
torch.nn.Conv2d.4b9f3d3ba2be9a40(1)_groups | 144 |
torch.nn.Conv2d.4b9f3d3ba2be9a40(1)_in_channels | 144 |
torch.nn.Conv2d.4b9f3d3ba2be9a40(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.4b9f3d3ba2be9a40(1)_out_channels | 144 |
torch.nn.Conv2d.4b9f3d3ba2be9a40(1)_padding | [1, 1] |
torch.nn.Conv2d.4b9f3d3ba2be9a40(1)_padding_mode | "zeros" |
torch.nn.Conv2d.4b9f3d3ba2be9a40(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.2c18cec9c9291e4c(1)_affine | true |
torch.nn.BatchNorm2d.2c18cec9c9291e4c(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.2c18cec9c9291e4c(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.2c18cec9c9291e4c(1)_num_features | 144 |
torch.nn.BatchNorm2d.2c18cec9c9291e4c(1)_track_running_stats | true |
torch.nn.ReLU6.b3f25bdf1a649dfd(1)_inplace | true |
torch.nn.Conv2d.5e4b2e969af65302(1)_bias | null |
torch.nn.Conv2d.5e4b2e969af65302(1)_dilation | [1, 1] |
torch.nn.Conv2d.5e4b2e969af65302(1)_groups | 1 |
torch.nn.Conv2d.5e4b2e969af65302(1)_in_channels | 144 |
torch.nn.Conv2d.5e4b2e969af65302(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.5e4b2e969af65302(1)_out_channels | 24 |
torch.nn.Conv2d.5e4b2e969af65302(1)_padding | [0, 0] |
torch.nn.Conv2d.5e4b2e969af65302(1)_padding_mode | "zeros" |
torch.nn.Conv2d.5e4b2e969af65302(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.b525e4987c66218f(1)_affine | true |
torch.nn.BatchNorm2d.b525e4987c66218f(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.b525e4987c66218f(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.b525e4987c66218f(1)_num_features | 24 |
torch.nn.BatchNorm2d.b525e4987c66218f(1)_track_running_stats | true |
torch.nn.InvertedResidual.2c42efb994cc115(1)_stride | 2 |
torch.nn.Sequential.2a029659bc6a75a2(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.eddaac8a62b2171d(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.eb2558b3e4690c83(1)_bias | null |
torch.nn.Conv2d.eb2558b3e4690c83(1)_dilation | [1, 1] |
torch.nn.Conv2d.eb2558b3e4690c83(1)_groups | 1 |
torch.nn.Conv2d.eb2558b3e4690c83(1)_in_channels | 24 |
torch.nn.Conv2d.eb2558b3e4690c83(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.eb2558b3e4690c83(1)_out_channels | 144 |
torch.nn.Conv2d.eb2558b3e4690c83(1)_padding | [0, 0] |
torch.nn.Conv2d.eb2558b3e4690c83(1)_padding_mode | "zeros" |
torch.nn.Conv2d.eb2558b3e4690c83(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.a32734e710539123(1)_affine | true |
torch.nn.BatchNorm2d.a32734e710539123(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.a32734e710539123(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.a32734e710539123(1)_num_features | 144 |
torch.nn.BatchNorm2d.a32734e710539123(1)_track_running_stats | true |
torch.nn.ReLU6.2afe1ee56d1767f5(1)_inplace | true |
torch.nn.Conv2dNormActivation.2f3e64c833d253ca(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.e04e3f0faeeae7da(1)_bias | null |
torch.nn.Conv2d.e04e3f0faeeae7da(1)_dilation | [1, 1] |
torch.nn.Conv2d.e04e3f0faeeae7da(1)_groups | 144 |
torch.nn.Conv2d.e04e3f0faeeae7da(1)_in_channels | 144 |
torch.nn.Conv2d.e04e3f0faeeae7da(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.e04e3f0faeeae7da(1)_out_channels | 144 |
torch.nn.Conv2d.e04e3f0faeeae7da(1)_padding | [1, 1] |
torch.nn.Conv2d.e04e3f0faeeae7da(1)_padding_mode | "zeros" |
torch.nn.Conv2d.e04e3f0faeeae7da(1)_stride | [2, 2] |
torch.nn.BatchNorm2d.7fa3f541f7aa8722(1)_affine | true |
torch.nn.BatchNorm2d.7fa3f541f7aa8722(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.7fa3f541f7aa8722(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.7fa3f541f7aa8722(1)_num_features | 144 |
torch.nn.BatchNorm2d.7fa3f541f7aa8722(1)_track_running_stats | true |
torch.nn.ReLU6.656a7ecc9dad1a09(1)_inplace | true |
torch.nn.Conv2d.ae2ed5ed1b502cec(1)_bias | null |
torch.nn.Conv2d.ae2ed5ed1b502cec(1)_dilation | [1, 1] |
torch.nn.Conv2d.ae2ed5ed1b502cec(1)_groups | 1 |
torch.nn.Conv2d.ae2ed5ed1b502cec(1)_in_channels | 144 |
torch.nn.Conv2d.ae2ed5ed1b502cec(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.ae2ed5ed1b502cec(1)_out_channels | 32 |
torch.nn.Conv2d.ae2ed5ed1b502cec(1)_padding | [0, 0] |
torch.nn.Conv2d.ae2ed5ed1b502cec(1)_padding_mode | "zeros" |
torch.nn.Conv2d.ae2ed5ed1b502cec(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.59ecf90fae266676(1)_affine | true |
torch.nn.BatchNorm2d.59ecf90fae266676(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.59ecf90fae266676(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.59ecf90fae266676(1)_num_features | 32 |
torch.nn.BatchNorm2d.59ecf90fae266676(1)_track_running_stats | true |
torch.nn.InvertedResidual.2aeec5801400c0de(1)_stride | 1 |
torch.nn.Sequential.7690694280d36d6a(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.16f4814cfb87af73(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.469042e1285ca89(1)_bias | null |
torch.nn.Conv2d.469042e1285ca89(1)_dilation | [1, 1] |
torch.nn.Conv2d.469042e1285ca89(1)_groups | 1 |
torch.nn.Conv2d.469042e1285ca89(1)_in_channels | 32 |
torch.nn.Conv2d.469042e1285ca89(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.469042e1285ca89(1)_out_channels | 192 |
torch.nn.Conv2d.469042e1285ca89(1)_padding | [0, 0] |
torch.nn.Conv2d.469042e1285ca89(1)_padding_mode | "zeros" |
torch.nn.Conv2d.469042e1285ca89(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.e85789e266943a33(1)_affine | true |
torch.nn.BatchNorm2d.e85789e266943a33(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.e85789e266943a33(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.e85789e266943a33(1)_num_features | 192 |
torch.nn.BatchNorm2d.e85789e266943a33(1)_track_running_stats | true |
torch.nn.ReLU6.cfcbe893a4a1705f(1)_inplace | true |
torch.nn.Conv2dNormActivation.654c0125eb2560f4(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.cffac1c32962d4ef(1)_bias | null |
torch.nn.Conv2d.cffac1c32962d4ef(1)_dilation | [1, 1] |
torch.nn.Conv2d.cffac1c32962d4ef(1)_groups | 192 |
torch.nn.Conv2d.cffac1c32962d4ef(1)_in_channels | 192 |
torch.nn.Conv2d.cffac1c32962d4ef(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.cffac1c32962d4ef(1)_out_channels | 192 |
torch.nn.Conv2d.cffac1c32962d4ef(1)_padding | [1, 1] |
torch.nn.Conv2d.cffac1c32962d4ef(1)_padding_mode | "zeros" |
torch.nn.Conv2d.cffac1c32962d4ef(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.e88404f5cec05d0b(1)_affine | true |
torch.nn.BatchNorm2d.e88404f5cec05d0b(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.e88404f5cec05d0b(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.e88404f5cec05d0b(1)_num_features | 192 |
torch.nn.BatchNorm2d.e88404f5cec05d0b(1)_track_running_stats | true |
torch.nn.ReLU6.1ebf6cf358c08adb(1)_inplace | true |
torch.nn.Conv2d.72c0e126a58cae42(1)_bias | null |
torch.nn.Conv2d.72c0e126a58cae42(1)_dilation | [1, 1] |
torch.nn.Conv2d.72c0e126a58cae42(1)_groups | 1 |
torch.nn.Conv2d.72c0e126a58cae42(1)_in_channels | 192 |
torch.nn.Conv2d.72c0e126a58cae42(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.72c0e126a58cae42(1)_out_channels | 32 |
torch.nn.Conv2d.72c0e126a58cae42(1)_padding | [0, 0] |
torch.nn.Conv2d.72c0e126a58cae42(1)_padding_mode | "zeros" |
torch.nn.Conv2d.72c0e126a58cae42(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.104c7dff69f4a2f0(1)_affine | true |
torch.nn.BatchNorm2d.104c7dff69f4a2f0(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.104c7dff69f4a2f0(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.104c7dff69f4a2f0(1)_num_features | 32 |
torch.nn.BatchNorm2d.104c7dff69f4a2f0(1)_track_running_stats | true |
torch.nn.InvertedResidual.bb74417ee964ce42(1)_stride | 1 |
torch.nn.Sequential.28ba71a33308b6ab(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.f8bd879839e67c86(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.33908ec2d0765c8e(1)_bias | null |
torch.nn.Conv2d.33908ec2d0765c8e(1)_dilation | [1, 1] |
torch.nn.Conv2d.33908ec2d0765c8e(1)_groups | 1 |
torch.nn.Conv2d.33908ec2d0765c8e(1)_in_channels | 32 |
torch.nn.Conv2d.33908ec2d0765c8e(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.33908ec2d0765c8e(1)_out_channels | 192 |
torch.nn.Conv2d.33908ec2d0765c8e(1)_padding | [0, 0] |
torch.nn.Conv2d.33908ec2d0765c8e(1)_padding_mode | "zeros" |
torch.nn.Conv2d.33908ec2d0765c8e(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.8c3266ec68cb286(1)_affine | true |
torch.nn.BatchNorm2d.8c3266ec68cb286(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.8c3266ec68cb286(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.8c3266ec68cb286(1)_num_features | 192 |
torch.nn.BatchNorm2d.8c3266ec68cb286(1)_track_running_stats | true |
torch.nn.ReLU6.2d7cb263a2a82d25(1)_inplace | true |
torch.nn.Conv2dNormActivation.ca1a249091eed388(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.308bad5fef708abf(1)_bias | null |
torch.nn.Conv2d.308bad5fef708abf(1)_dilation | [1, 1] |
torch.nn.Conv2d.308bad5fef708abf(1)_groups | 192 |
torch.nn.Conv2d.308bad5fef708abf(1)_in_channels | 192 |
torch.nn.Conv2d.308bad5fef708abf(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.308bad5fef708abf(1)_out_channels | 192 |
torch.nn.Conv2d.308bad5fef708abf(1)_padding | [1, 1] |
torch.nn.Conv2d.308bad5fef708abf(1)_padding_mode | "zeros" |
torch.nn.Conv2d.308bad5fef708abf(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.b57e46826e974469(1)_affine | true |
torch.nn.BatchNorm2d.b57e46826e974469(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.b57e46826e974469(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.b57e46826e974469(1)_num_features | 192 |
torch.nn.BatchNorm2d.b57e46826e974469(1)_track_running_stats | true |
torch.nn.ReLU6.edbec2b9daa3635c(1)_inplace | true |
torch.nn.Conv2d.13fa9efed1393e8a(1)_bias | null |
torch.nn.Conv2d.13fa9efed1393e8a(1)_dilation | [1, 1] |
torch.nn.Conv2d.13fa9efed1393e8a(1)_groups | 1 |
torch.nn.Conv2d.13fa9efed1393e8a(1)_in_channels | 192 |
torch.nn.Conv2d.13fa9efed1393e8a(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.13fa9efed1393e8a(1)_out_channels | 32 |
torch.nn.Conv2d.13fa9efed1393e8a(1)_padding | [0, 0] |
torch.nn.Conv2d.13fa9efed1393e8a(1)_padding_mode | "zeros" |
torch.nn.Conv2d.13fa9efed1393e8a(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.8c1a8c214a084d38(1)_affine | true |
torch.nn.BatchNorm2d.8c1a8c214a084d38(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.8c1a8c214a084d38(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.8c1a8c214a084d38(1)_num_features | 32 |
torch.nn.BatchNorm2d.8c1a8c214a084d38(1)_track_running_stats | true |
torch.nn.InvertedResidual.f60cd8be603f7ba3(1)_stride | 2 |
torch.nn.Sequential.26876d827e58075(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.fb2b7bd823b78d68(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.161b2e89251387b4(1)_bias | null |
torch.nn.Conv2d.161b2e89251387b4(1)_dilation | [1, 1] |
torch.nn.Conv2d.161b2e89251387b4(1)_groups | 1 |
torch.nn.Conv2d.161b2e89251387b4(1)_in_channels | 32 |
torch.nn.Conv2d.161b2e89251387b4(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.161b2e89251387b4(1)_out_channels | 192 |
torch.nn.Conv2d.161b2e89251387b4(1)_padding | [0, 0] |
torch.nn.Conv2d.161b2e89251387b4(1)_padding_mode | "zeros" |
torch.nn.Conv2d.161b2e89251387b4(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.fe3ac4668c562db1(1)_affine | true |
torch.nn.BatchNorm2d.fe3ac4668c562db1(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.fe3ac4668c562db1(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.fe3ac4668c562db1(1)_num_features | 192 |
torch.nn.BatchNorm2d.fe3ac4668c562db1(1)_track_running_stats | true |
torch.nn.ReLU6.bfa0a9169c324e5d(1)_inplace | true |
torch.nn.Conv2dNormActivation.ed2e8fc93ff68606(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.f7768b52b06d9be3(1)_bias | null |
torch.nn.Conv2d.f7768b52b06d9be3(1)_dilation | [1, 1] |
torch.nn.Conv2d.f7768b52b06d9be3(1)_groups | 192 |
torch.nn.Conv2d.f7768b52b06d9be3(1)_in_channels | 192 |
torch.nn.Conv2d.f7768b52b06d9be3(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.f7768b52b06d9be3(1)_out_channels | 192 |
torch.nn.Conv2d.f7768b52b06d9be3(1)_padding | [1, 1] |
torch.nn.Conv2d.f7768b52b06d9be3(1)_padding_mode | "zeros" |
torch.nn.Conv2d.f7768b52b06d9be3(1)_stride | [2, 2] |
torch.nn.BatchNorm2d.e805ad658e477490(1)_affine | true |
torch.nn.BatchNorm2d.e805ad658e477490(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.e805ad658e477490(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.e805ad658e477490(1)_num_features | 192 |
torch.nn.BatchNorm2d.e805ad658e477490(1)_track_running_stats | true |
torch.nn.ReLU6.ed08519ab46621a3(1)_inplace | true |
torch.nn.Conv2d.1b623b50c45140dd(1)_bias | null |
torch.nn.Conv2d.1b623b50c45140dd(1)_dilation | [1, 1] |
torch.nn.Conv2d.1b623b50c45140dd(1)_groups | 1 |
torch.nn.Conv2d.1b623b50c45140dd(1)_in_channels | 192 |
torch.nn.Conv2d.1b623b50c45140dd(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.1b623b50c45140dd(1)_out_channels | 64 |
torch.nn.Conv2d.1b623b50c45140dd(1)_padding | [0, 0] |
torch.nn.Conv2d.1b623b50c45140dd(1)_padding_mode | "zeros" |
torch.nn.Conv2d.1b623b50c45140dd(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.a34e5978fba9569b(1)_affine | true |
torch.nn.BatchNorm2d.a34e5978fba9569b(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.a34e5978fba9569b(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.a34e5978fba9569b(1)_num_features | 64 |
torch.nn.BatchNorm2d.a34e5978fba9569b(1)_track_running_stats | true |
torch.nn.InvertedResidual.ab7b99411a6adedf(1)_stride | 1 |
torch.nn.Sequential.620034ab65a6b0a(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.131dbcb36f507145(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.61622720ced9751a(1)_bias | null |
torch.nn.Conv2d.61622720ced9751a(1)_dilation | [1, 1] |
torch.nn.Conv2d.61622720ced9751a(1)_groups | 1 |
torch.nn.Conv2d.61622720ced9751a(1)_in_channels | 64 |
torch.nn.Conv2d.61622720ced9751a(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.61622720ced9751a(1)_out_channels | 384 |
torch.nn.Conv2d.61622720ced9751a(1)_padding | [0, 0] |
torch.nn.Conv2d.61622720ced9751a(1)_padding_mode | "zeros" |
torch.nn.Conv2d.61622720ced9751a(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.904ed136c1d74770(1)_affine | true |
torch.nn.BatchNorm2d.904ed136c1d74770(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.904ed136c1d74770(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.904ed136c1d74770(1)_num_features | 384 |
torch.nn.BatchNorm2d.904ed136c1d74770(1)_track_running_stats | true |
torch.nn.ReLU6.d1c01188a23cd7cd(1)_inplace | true |
torch.nn.Conv2dNormActivation.fd287b66db860d5e(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.cd7e6d1655a9cfb5(1)_bias | null |
torch.nn.Conv2d.cd7e6d1655a9cfb5(1)_dilation | [1, 1] |
torch.nn.Conv2d.cd7e6d1655a9cfb5(1)_groups | 384 |
torch.nn.Conv2d.cd7e6d1655a9cfb5(1)_in_channels | 384 |
torch.nn.Conv2d.cd7e6d1655a9cfb5(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.cd7e6d1655a9cfb5(1)_out_channels | 384 |
torch.nn.Conv2d.cd7e6d1655a9cfb5(1)_padding | [1, 1] |
torch.nn.Conv2d.cd7e6d1655a9cfb5(1)_padding_mode | "zeros" |
torch.nn.Conv2d.cd7e6d1655a9cfb5(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.4bce8db94d50fa2(1)_affine | true |
torch.nn.BatchNorm2d.4bce8db94d50fa2(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.4bce8db94d50fa2(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.4bce8db94d50fa2(1)_num_features | 384 |
torch.nn.BatchNorm2d.4bce8db94d50fa2(1)_track_running_stats | true |
torch.nn.ReLU6.8afb5fd526dac5c4(1)_inplace | true |
torch.nn.Conv2d.f6306dab712ebfaf(1)_bias | null |
torch.nn.Conv2d.f6306dab712ebfaf(1)_dilation | [1, 1] |
torch.nn.Conv2d.f6306dab712ebfaf(1)_groups | 1 |
torch.nn.Conv2d.f6306dab712ebfaf(1)_in_channels | 384 |
torch.nn.Conv2d.f6306dab712ebfaf(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.f6306dab712ebfaf(1)_out_channels | 64 |
torch.nn.Conv2d.f6306dab712ebfaf(1)_padding | [0, 0] |
torch.nn.Conv2d.f6306dab712ebfaf(1)_padding_mode | "zeros" |
torch.nn.Conv2d.f6306dab712ebfaf(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.4eb1f98e787f34be(1)_affine | true |
torch.nn.BatchNorm2d.4eb1f98e787f34be(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.4eb1f98e787f34be(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.4eb1f98e787f34be(1)_num_features | 64 |
torch.nn.BatchNorm2d.4eb1f98e787f34be(1)_track_running_stats | true |
torch.nn.InvertedResidual.2ef1fce4f4786e8(1)_stride | 1 |
torch.nn.Sequential.5bfae72dfe87a674(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.bcc7775fc5d77d75(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.fdab120f2f3150b2(1)_bias | null |
torch.nn.Conv2d.fdab120f2f3150b2(1)_dilation | [1, 1] |
torch.nn.Conv2d.fdab120f2f3150b2(1)_groups | 1 |
torch.nn.Conv2d.fdab120f2f3150b2(1)_in_channels | 64 |
torch.nn.Conv2d.fdab120f2f3150b2(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.fdab120f2f3150b2(1)_out_channels | 384 |
torch.nn.Conv2d.fdab120f2f3150b2(1)_padding | [0, 0] |
torch.nn.Conv2d.fdab120f2f3150b2(1)_padding_mode | "zeros" |
torch.nn.Conv2d.fdab120f2f3150b2(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.7ab2e782355c9f18(1)_affine | true |
torch.nn.BatchNorm2d.7ab2e782355c9f18(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.7ab2e782355c9f18(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.7ab2e782355c9f18(1)_num_features | 384 |
torch.nn.BatchNorm2d.7ab2e782355c9f18(1)_track_running_stats | true |
torch.nn.ReLU6.e30477fb57be238a(1)_inplace | true |
torch.nn.Conv2dNormActivation.fb3897fa3373f35(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.b670f8239ae6b59(1)_bias | null |
torch.nn.Conv2d.b670f8239ae6b59(1)_dilation | [1, 1] |
torch.nn.Conv2d.b670f8239ae6b59(1)_groups | 384 |
torch.nn.Conv2d.b670f8239ae6b59(1)_in_channels | 384 |
torch.nn.Conv2d.b670f8239ae6b59(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.b670f8239ae6b59(1)_out_channels | 384 |
torch.nn.Conv2d.b670f8239ae6b59(1)_padding | [1, 1] |
torch.nn.Conv2d.b670f8239ae6b59(1)_padding_mode | "zeros" |
torch.nn.Conv2d.b670f8239ae6b59(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.24c985f2c43fb35b(1)_affine | true |
torch.nn.BatchNorm2d.24c985f2c43fb35b(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.24c985f2c43fb35b(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.24c985f2c43fb35b(1)_num_features | 384 |
torch.nn.BatchNorm2d.24c985f2c43fb35b(1)_track_running_stats | true |
torch.nn.ReLU6.3f169cdf17f425d(1)_inplace | true |
torch.nn.Conv2d.437bd7e5f732ecd(1)_bias | null |
torch.nn.Conv2d.437bd7e5f732ecd(1)_dilation | [1, 1] |
torch.nn.Conv2d.437bd7e5f732ecd(1)_groups | 1 |
torch.nn.Conv2d.437bd7e5f732ecd(1)_in_channels | 384 |
torch.nn.Conv2d.437bd7e5f732ecd(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.437bd7e5f732ecd(1)_out_channels | 64 |
torch.nn.Conv2d.437bd7e5f732ecd(1)_padding | [0, 0] |
torch.nn.Conv2d.437bd7e5f732ecd(1)_padding_mode | "zeros" |
torch.nn.Conv2d.437bd7e5f732ecd(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.643b0864cf57645(1)_affine | true |
torch.nn.BatchNorm2d.643b0864cf57645(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.643b0864cf57645(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.643b0864cf57645(1)_num_features | 64 |
torch.nn.BatchNorm2d.643b0864cf57645(1)_track_running_stats | true |
torch.nn.Sequential.6a1fb84ce40b7eb3(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}] |
torch.nn.Linear.c28548a45408125a(1)_in_features | 1280 |
torch.nn.Linear.c28548a45408125a(1)_out_features | 67 |
torch.nn.Softmax.e25b3a238ad740ae(1)_dim | 1 |
torch.nn.AdaptiveAvgPool2d.68f1fbe6b717ca9c(1)_output_size | 1 |