torch.nn.Model2.271094a58cd7bbd(1) | Automatically created pytorch flow. |
torch.nn.Sequential.1be0df88678ef348(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "4", "step_name": "4"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "5", "step_name": "5"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "6", "step_name": "6"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "7", "step_name": "7"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "8", "step_name": "8"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "9", "step_name": "9"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "10", "step_name": "10"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "11", "step_name": "11"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "12", "step_name": "12"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "13", "step_name": "13"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "14", "step_name": "14"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "15", "step_name": "15"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "16", "step_name": "16"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "17", "step_name": "17"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "18", "step_name": "18"}}] |
torch.nn.Conv2dNormActivation.faf601d03ffec040(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.422b7f208867f5fd(1)_bias | null |
torch.nn.Conv2d.422b7f208867f5fd(1)_dilation | [1, 1] |
torch.nn.Conv2d.422b7f208867f5fd(1)_groups | 1 |
torch.nn.Conv2d.422b7f208867f5fd(1)_in_channels | 3 |
torch.nn.Conv2d.422b7f208867f5fd(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.422b7f208867f5fd(1)_out_channels | 32 |
torch.nn.Conv2d.422b7f208867f5fd(1)_padding | [1, 1] |
torch.nn.Conv2d.422b7f208867f5fd(1)_padding_mode | "zeros" |
torch.nn.Conv2d.422b7f208867f5fd(1)_stride | [2, 2] |
torch.nn.BatchNorm2d.6f7a4ef89a8f8c2a(1)_affine | true |
torch.nn.BatchNorm2d.6f7a4ef89a8f8c2a(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.6f7a4ef89a8f8c2a(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.6f7a4ef89a8f8c2a(1)_num_features | 32 |
torch.nn.BatchNorm2d.6f7a4ef89a8f8c2a(1)_track_running_stats | true |
torch.nn.ReLU6.2c06f49658ce99c4(1)_inplace | true |
torch.nn.InvertedResidual.d2493a9522e49559(1)_stride | 1 |
torch.nn.Sequential.a9908d1689413506(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2dNormActivation.7d71a9d4de9ccbe(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.99914c63e6a8b143(1)_bias | null |
torch.nn.Conv2d.99914c63e6a8b143(1)_dilation | [1, 1] |
torch.nn.Conv2d.99914c63e6a8b143(1)_groups | 32 |
torch.nn.Conv2d.99914c63e6a8b143(1)_in_channels | 32 |
torch.nn.Conv2d.99914c63e6a8b143(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.99914c63e6a8b143(1)_out_channels | 32 |
torch.nn.Conv2d.99914c63e6a8b143(1)_padding | [1, 1] |
torch.nn.Conv2d.99914c63e6a8b143(1)_padding_mode | "zeros" |
torch.nn.Conv2d.99914c63e6a8b143(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.c4f340867574f244(1)_affine | true |
torch.nn.BatchNorm2d.c4f340867574f244(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.c4f340867574f244(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.c4f340867574f244(1)_num_features | 32 |
torch.nn.BatchNorm2d.c4f340867574f244(1)_track_running_stats | true |
torch.nn.ReLU6.133be78e82a8403f(1)_inplace | true |
torch.nn.Conv2d.eea4cb4ad128a009(1)_bias | null |
torch.nn.Conv2d.eea4cb4ad128a009(1)_dilation | [1, 1] |
torch.nn.Conv2d.eea4cb4ad128a009(1)_groups | 1 |
torch.nn.Conv2d.eea4cb4ad128a009(1)_in_channels | 32 |
torch.nn.Conv2d.eea4cb4ad128a009(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.eea4cb4ad128a009(1)_out_channels | 16 |
torch.nn.Conv2d.eea4cb4ad128a009(1)_padding | [0, 0] |
torch.nn.Conv2d.eea4cb4ad128a009(1)_padding_mode | "zeros" |
torch.nn.Conv2d.eea4cb4ad128a009(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.b01d390b16577ff3(1)_affine | true |
torch.nn.BatchNorm2d.b01d390b16577ff3(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.b01d390b16577ff3(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.b01d390b16577ff3(1)_num_features | 16 |
torch.nn.BatchNorm2d.b01d390b16577ff3(1)_track_running_stats | true |
torch.nn.InvertedResidual.e1f5e1b4cfcc1c79(1)_stride | 1 |
torch.nn.Sequential.b58db58f9daf825b(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.4ea087d14f129db0(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.297a74b867e4305(1)_bias | null |
torch.nn.Conv2d.297a74b867e4305(1)_dilation | [1, 1] |
torch.nn.Conv2d.297a74b867e4305(1)_groups | 1 |
torch.nn.Conv2d.297a74b867e4305(1)_in_channels | 64 |
torch.nn.Conv2d.297a74b867e4305(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.297a74b867e4305(1)_out_channels | 384 |
torch.nn.Conv2d.297a74b867e4305(1)_padding | [0, 0] |
torch.nn.Conv2d.297a74b867e4305(1)_padding_mode | "zeros" |
torch.nn.Conv2d.297a74b867e4305(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.2a32575f9a718e32(1)_affine | true |
torch.nn.BatchNorm2d.2a32575f9a718e32(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.2a32575f9a718e32(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.2a32575f9a718e32(1)_num_features | 384 |
torch.nn.BatchNorm2d.2a32575f9a718e32(1)_track_running_stats | true |
torch.nn.ReLU6.e51a259df238b9fa(1)_inplace | true |
torch.nn.Conv2dNormActivation.89da7ca926d6656a(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.7f0826a842aeb98e(1)_bias | null |
torch.nn.Conv2d.7f0826a842aeb98e(1)_dilation | [1, 1] |
torch.nn.Conv2d.7f0826a842aeb98e(1)_groups | 384 |
torch.nn.Conv2d.7f0826a842aeb98e(1)_in_channels | 384 |
torch.nn.Conv2d.7f0826a842aeb98e(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.7f0826a842aeb98e(1)_out_channels | 384 |
torch.nn.Conv2d.7f0826a842aeb98e(1)_padding | [1, 1] |
torch.nn.Conv2d.7f0826a842aeb98e(1)_padding_mode | "zeros" |
torch.nn.Conv2d.7f0826a842aeb98e(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.29146ef75c29a7be(1)_affine | true |
torch.nn.BatchNorm2d.29146ef75c29a7be(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.29146ef75c29a7be(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.29146ef75c29a7be(1)_num_features | 384 |
torch.nn.BatchNorm2d.29146ef75c29a7be(1)_track_running_stats | true |
torch.nn.ReLU6.9e1b495298347a62(1)_inplace | true |
torch.nn.Conv2d.2cbc3dc17e8bbcbe(1)_bias | null |
torch.nn.Conv2d.2cbc3dc17e8bbcbe(1)_dilation | [1, 1] |
torch.nn.Conv2d.2cbc3dc17e8bbcbe(1)_groups | 1 |
torch.nn.Conv2d.2cbc3dc17e8bbcbe(1)_in_channels | 384 |
torch.nn.Conv2d.2cbc3dc17e8bbcbe(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.2cbc3dc17e8bbcbe(1)_out_channels | 64 |
torch.nn.Conv2d.2cbc3dc17e8bbcbe(1)_padding | [0, 0] |
torch.nn.Conv2d.2cbc3dc17e8bbcbe(1)_padding_mode | "zeros" |
torch.nn.Conv2d.2cbc3dc17e8bbcbe(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.d284b0db9d8fdde2(1)_affine | true |
torch.nn.BatchNorm2d.d284b0db9d8fdde2(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.d284b0db9d8fdde2(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.d284b0db9d8fdde2(1)_num_features | 64 |
torch.nn.BatchNorm2d.d284b0db9d8fdde2(1)_track_running_stats | true |
torch.nn.InvertedResidual.d70822051814d4fb(1)_stride | 1 |
torch.nn.Sequential.873c09df55c3557c(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.35194f764644d8ef(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.bd6d628a177b679(1)_bias | null |
torch.nn.Conv2d.bd6d628a177b679(1)_dilation | [1, 1] |
torch.nn.Conv2d.bd6d628a177b679(1)_groups | 1 |
torch.nn.Conv2d.bd6d628a177b679(1)_in_channels | 64 |
torch.nn.Conv2d.bd6d628a177b679(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.bd6d628a177b679(1)_out_channels | 384 |
torch.nn.Conv2d.bd6d628a177b679(1)_padding | [0, 0] |
torch.nn.Conv2d.bd6d628a177b679(1)_padding_mode | "zeros" |
torch.nn.Conv2d.bd6d628a177b679(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.60406f07c7029f2b(1)_affine | true |
torch.nn.BatchNorm2d.60406f07c7029f2b(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.60406f07c7029f2b(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.60406f07c7029f2b(1)_num_features | 384 |
torch.nn.BatchNorm2d.60406f07c7029f2b(1)_track_running_stats | true |
torch.nn.ReLU6.153197423bff7788(1)_inplace | true |
torch.nn.Conv2dNormActivation.e7d8a37c7a056352(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.f23d7cb97b51edcf(1)_bias | null |
torch.nn.Conv2d.f23d7cb97b51edcf(1)_dilation | [1, 1] |
torch.nn.Conv2d.f23d7cb97b51edcf(1)_groups | 384 |
torch.nn.Conv2d.f23d7cb97b51edcf(1)_in_channels | 384 |
torch.nn.Conv2d.f23d7cb97b51edcf(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.f23d7cb97b51edcf(1)_out_channels | 384 |
torch.nn.Conv2d.f23d7cb97b51edcf(1)_padding | [1, 1] |
torch.nn.Conv2d.f23d7cb97b51edcf(1)_padding_mode | "zeros" |
torch.nn.Conv2d.f23d7cb97b51edcf(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.2bcb5609c29127e7(1)_affine | true |
torch.nn.BatchNorm2d.2bcb5609c29127e7(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.2bcb5609c29127e7(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.2bcb5609c29127e7(1)_num_features | 384 |
torch.nn.BatchNorm2d.2bcb5609c29127e7(1)_track_running_stats | true |
torch.nn.ReLU6.fd60e3f282c1cc96(1)_inplace | true |
torch.nn.Conv2d.f07684a8463f5f5d(1)_bias | null |
torch.nn.Conv2d.f07684a8463f5f5d(1)_dilation | [1, 1] |
torch.nn.Conv2d.f07684a8463f5f5d(1)_groups | 1 |
torch.nn.Conv2d.f07684a8463f5f5d(1)_in_channels | 384 |
torch.nn.Conv2d.f07684a8463f5f5d(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.f07684a8463f5f5d(1)_out_channels | 96 |
torch.nn.Conv2d.f07684a8463f5f5d(1)_padding | [0, 0] |
torch.nn.Conv2d.f07684a8463f5f5d(1)_padding_mode | "zeros" |
torch.nn.Conv2d.f07684a8463f5f5d(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.a699919a2efb9a0f(1)_affine | true |
torch.nn.BatchNorm2d.a699919a2efb9a0f(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.a699919a2efb9a0f(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.a699919a2efb9a0f(1)_num_features | 96 |
torch.nn.BatchNorm2d.a699919a2efb9a0f(1)_track_running_stats | true |
torch.nn.InvertedResidual.bc1cb7e983e6057e(1)_stride | 1 |
torch.nn.Sequential.c6376d57c251d2b6(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.a672865bead8e62a(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.1b354269e24edc2c(1)_bias | null |
torch.nn.Conv2d.1b354269e24edc2c(1)_dilation | [1, 1] |
torch.nn.Conv2d.1b354269e24edc2c(1)_groups | 1 |
torch.nn.Conv2d.1b354269e24edc2c(1)_in_channels | 96 |
torch.nn.Conv2d.1b354269e24edc2c(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.1b354269e24edc2c(1)_out_channels | 576 |
torch.nn.Conv2d.1b354269e24edc2c(1)_padding | [0, 0] |
torch.nn.Conv2d.1b354269e24edc2c(1)_padding_mode | "zeros" |
torch.nn.Conv2d.1b354269e24edc2c(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.bb94834bc282f9a0(1)_affine | true |
torch.nn.BatchNorm2d.bb94834bc282f9a0(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.bb94834bc282f9a0(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.bb94834bc282f9a0(1)_num_features | 576 |
torch.nn.BatchNorm2d.bb94834bc282f9a0(1)_track_running_stats | true |
torch.nn.ReLU6.ba6c48358f1bd497(1)_inplace | true |
torch.nn.Conv2dNormActivation.5ec4cba9c5344ed1(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.5c17606e69ac7bc7(1)_bias | null |
torch.nn.Conv2d.5c17606e69ac7bc7(1)_dilation | [1, 1] |
torch.nn.Conv2d.5c17606e69ac7bc7(1)_groups | 576 |
torch.nn.Conv2d.5c17606e69ac7bc7(1)_in_channels | 576 |
torch.nn.Conv2d.5c17606e69ac7bc7(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.5c17606e69ac7bc7(1)_out_channels | 576 |
torch.nn.Conv2d.5c17606e69ac7bc7(1)_padding | [1, 1] |
torch.nn.Conv2d.5c17606e69ac7bc7(1)_padding_mode | "zeros" |
torch.nn.Conv2d.5c17606e69ac7bc7(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.540f07bc49ae9afa(1)_affine | true |
torch.nn.BatchNorm2d.540f07bc49ae9afa(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.540f07bc49ae9afa(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.540f07bc49ae9afa(1)_num_features | 576 |
torch.nn.BatchNorm2d.540f07bc49ae9afa(1)_track_running_stats | true |
torch.nn.ReLU6.609126fa69ffc59a(1)_inplace | true |
torch.nn.Conv2d.ca55fdce20252c32(1)_bias | null |
torch.nn.Conv2d.ca55fdce20252c32(1)_dilation | [1, 1] |
torch.nn.Conv2d.ca55fdce20252c32(1)_groups | 1 |
torch.nn.Conv2d.ca55fdce20252c32(1)_in_channels | 576 |
torch.nn.Conv2d.ca55fdce20252c32(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.ca55fdce20252c32(1)_out_channels | 96 |
torch.nn.Conv2d.ca55fdce20252c32(1)_padding | [0, 0] |
torch.nn.Conv2d.ca55fdce20252c32(1)_padding_mode | "zeros" |
torch.nn.Conv2d.ca55fdce20252c32(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.df246d352fca18e2(1)_affine | true |
torch.nn.BatchNorm2d.df246d352fca18e2(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.df246d352fca18e2(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.df246d352fca18e2(1)_num_features | 96 |
torch.nn.BatchNorm2d.df246d352fca18e2(1)_track_running_stats | true |
torch.nn.InvertedResidual.51683908d1081b5c(1)_stride | 1 |
torch.nn.Sequential.f71996f0efec693(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.80ffacbb84218963(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.9f08a29bfa824af(1)_bias | null |
torch.nn.Conv2d.9f08a29bfa824af(1)_dilation | [1, 1] |
torch.nn.Conv2d.9f08a29bfa824af(1)_groups | 1 |
torch.nn.Conv2d.9f08a29bfa824af(1)_in_channels | 96 |
torch.nn.Conv2d.9f08a29bfa824af(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.9f08a29bfa824af(1)_out_channels | 576 |
torch.nn.Conv2d.9f08a29bfa824af(1)_padding | [0, 0] |
torch.nn.Conv2d.9f08a29bfa824af(1)_padding_mode | "zeros" |
torch.nn.Conv2d.9f08a29bfa824af(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.8e7b9dbf3942c43e(1)_affine | true |
torch.nn.BatchNorm2d.8e7b9dbf3942c43e(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.8e7b9dbf3942c43e(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.8e7b9dbf3942c43e(1)_num_features | 576 |
torch.nn.BatchNorm2d.8e7b9dbf3942c43e(1)_track_running_stats | true |
torch.nn.ReLU6.ad3f5cd35576476f(1)_inplace | true |
torch.nn.Conv2dNormActivation.832e263e45b33d00(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.7c0669a288b5a02f(1)_bias | null |
torch.nn.Conv2d.7c0669a288b5a02f(1)_dilation | [1, 1] |
torch.nn.Conv2d.7c0669a288b5a02f(1)_groups | 576 |
torch.nn.Conv2d.7c0669a288b5a02f(1)_in_channels | 576 |
torch.nn.Conv2d.7c0669a288b5a02f(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.7c0669a288b5a02f(1)_out_channels | 576 |
torch.nn.Conv2d.7c0669a288b5a02f(1)_padding | [1, 1] |
torch.nn.Conv2d.7c0669a288b5a02f(1)_padding_mode | "zeros" |
torch.nn.Conv2d.7c0669a288b5a02f(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.571ff807e8afb08b(1)_affine | true |
torch.nn.BatchNorm2d.571ff807e8afb08b(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.571ff807e8afb08b(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.571ff807e8afb08b(1)_num_features | 576 |
torch.nn.BatchNorm2d.571ff807e8afb08b(1)_track_running_stats | true |
torch.nn.ReLU6.85f5406bf83c470b(1)_inplace | true |
torch.nn.Conv2d.966e1ea059cdbc7c(1)_bias | null |
torch.nn.Conv2d.966e1ea059cdbc7c(1)_dilation | [1, 1] |
torch.nn.Conv2d.966e1ea059cdbc7c(1)_groups | 1 |
torch.nn.Conv2d.966e1ea059cdbc7c(1)_in_channels | 576 |
torch.nn.Conv2d.966e1ea059cdbc7c(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.966e1ea059cdbc7c(1)_out_channels | 96 |
torch.nn.Conv2d.966e1ea059cdbc7c(1)_padding | [0, 0] |
torch.nn.Conv2d.966e1ea059cdbc7c(1)_padding_mode | "zeros" |
torch.nn.Conv2d.966e1ea059cdbc7c(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.f1d667338e584ac5(1)_affine | true |
torch.nn.BatchNorm2d.f1d667338e584ac5(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.f1d667338e584ac5(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.f1d667338e584ac5(1)_num_features | 96 |
torch.nn.BatchNorm2d.f1d667338e584ac5(1)_track_running_stats | true |
torch.nn.InvertedResidual.e0039e07dc6c9077(1)_stride | 2 |
torch.nn.Sequential.4e94d3b83f8afcc2(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.2f6b39a6ab15e50a(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.bd08093d3552c70b(1)_bias | null |
torch.nn.Conv2d.bd08093d3552c70b(1)_dilation | [1, 1] |
torch.nn.Conv2d.bd08093d3552c70b(1)_groups | 1 |
torch.nn.Conv2d.bd08093d3552c70b(1)_in_channels | 96 |
torch.nn.Conv2d.bd08093d3552c70b(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.bd08093d3552c70b(1)_out_channels | 576 |
torch.nn.Conv2d.bd08093d3552c70b(1)_padding | [0, 0] |
torch.nn.Conv2d.bd08093d3552c70b(1)_padding_mode | "zeros" |
torch.nn.Conv2d.bd08093d3552c70b(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.80a8e55aee9ca868(1)_affine | true |
torch.nn.BatchNorm2d.80a8e55aee9ca868(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.80a8e55aee9ca868(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.80a8e55aee9ca868(1)_num_features | 576 |
torch.nn.BatchNorm2d.80a8e55aee9ca868(1)_track_running_stats | true |
torch.nn.ReLU6.6dc3dcb2e42b51a3(1)_inplace | true |
torch.nn.Conv2dNormActivation.3b01c5ccd88256cd(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.97ec2f7d89aa36e0(1)_bias | null |
torch.nn.Conv2d.97ec2f7d89aa36e0(1)_dilation | [1, 1] |
torch.nn.Conv2d.97ec2f7d89aa36e0(1)_groups | 576 |
torch.nn.Conv2d.97ec2f7d89aa36e0(1)_in_channels | 576 |
torch.nn.Conv2d.97ec2f7d89aa36e0(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.97ec2f7d89aa36e0(1)_out_channels | 576 |
torch.nn.Conv2d.97ec2f7d89aa36e0(1)_padding | [1, 1] |
torch.nn.Conv2d.97ec2f7d89aa36e0(1)_padding_mode | "zeros" |
torch.nn.Conv2d.97ec2f7d89aa36e0(1)_stride | [2, 2] |
torch.nn.BatchNorm2d.23f6f0d614a6bea(1)_affine | true |
torch.nn.BatchNorm2d.23f6f0d614a6bea(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.23f6f0d614a6bea(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.23f6f0d614a6bea(1)_num_features | 576 |
torch.nn.BatchNorm2d.23f6f0d614a6bea(1)_track_running_stats | true |
torch.nn.ReLU6.b0992e3557059952(1)_inplace | true |
torch.nn.Conv2d.9d2abe25bc9f28be(1)_bias | null |
torch.nn.Conv2d.9d2abe25bc9f28be(1)_dilation | [1, 1] |
torch.nn.Conv2d.9d2abe25bc9f28be(1)_groups | 1 |
torch.nn.Conv2d.9d2abe25bc9f28be(1)_in_channels | 576 |
torch.nn.Conv2d.9d2abe25bc9f28be(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.9d2abe25bc9f28be(1)_out_channels | 160 |
torch.nn.Conv2d.9d2abe25bc9f28be(1)_padding | [0, 0] |
torch.nn.Conv2d.9d2abe25bc9f28be(1)_padding_mode | "zeros" |
torch.nn.Conv2d.9d2abe25bc9f28be(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.342eb58563592e42(1)_affine | true |
torch.nn.BatchNorm2d.342eb58563592e42(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.342eb58563592e42(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.342eb58563592e42(1)_num_features | 160 |
torch.nn.BatchNorm2d.342eb58563592e42(1)_track_running_stats | true |
torch.nn.InvertedResidual.842df0d0f6c8e804(1)_stride | 1 |
torch.nn.Sequential.f9b2f64a55b94401(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.f8c2bfc03b706f69(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.faa0cac3e10dfdea(1)_bias | null |
torch.nn.Conv2d.faa0cac3e10dfdea(1)_dilation | [1, 1] |
torch.nn.Conv2d.faa0cac3e10dfdea(1)_groups | 1 |
torch.nn.Conv2d.faa0cac3e10dfdea(1)_in_channels | 160 |
torch.nn.Conv2d.faa0cac3e10dfdea(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.faa0cac3e10dfdea(1)_out_channels | 960 |
torch.nn.Conv2d.faa0cac3e10dfdea(1)_padding | [0, 0] |
torch.nn.Conv2d.faa0cac3e10dfdea(1)_padding_mode | "zeros" |
torch.nn.Conv2d.faa0cac3e10dfdea(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.522f75eb93325eda(1)_affine | true |
torch.nn.BatchNorm2d.522f75eb93325eda(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.522f75eb93325eda(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.522f75eb93325eda(1)_num_features | 960 |
torch.nn.BatchNorm2d.522f75eb93325eda(1)_track_running_stats | true |
torch.nn.ReLU6.cf000f2978279dfe(1)_inplace | true |
torch.nn.Conv2dNormActivation.31e90347980a3e17(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.e051644c851a3e62(1)_bias | null |
torch.nn.Conv2d.e051644c851a3e62(1)_dilation | [1, 1] |
torch.nn.Conv2d.e051644c851a3e62(1)_groups | 960 |
torch.nn.Conv2d.e051644c851a3e62(1)_in_channels | 960 |
torch.nn.Conv2d.e051644c851a3e62(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.e051644c851a3e62(1)_out_channels | 960 |
torch.nn.Conv2d.e051644c851a3e62(1)_padding | [1, 1] |
torch.nn.Conv2d.e051644c851a3e62(1)_padding_mode | "zeros" |
torch.nn.Conv2d.e051644c851a3e62(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.b338014a379d207a(1)_affine | true |
torch.nn.BatchNorm2d.b338014a379d207a(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.b338014a379d207a(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.b338014a379d207a(1)_num_features | 960 |
torch.nn.BatchNorm2d.b338014a379d207a(1)_track_running_stats | true |
torch.nn.ReLU6.f4f57ad72f908def(1)_inplace | true |
torch.nn.Conv2d.ee9f77bf773c802(1)_bias | null |
torch.nn.Conv2d.ee9f77bf773c802(1)_dilation | [1, 1] |
torch.nn.Conv2d.ee9f77bf773c802(1)_groups | 1 |
torch.nn.Conv2d.ee9f77bf773c802(1)_in_channels | 960 |
torch.nn.Conv2d.ee9f77bf773c802(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.ee9f77bf773c802(1)_out_channels | 160 |
torch.nn.Conv2d.ee9f77bf773c802(1)_padding | [0, 0] |
torch.nn.Conv2d.ee9f77bf773c802(1)_padding_mode | "zeros" |
torch.nn.Conv2d.ee9f77bf773c802(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.ca29bece3a917e43(1)_affine | true |
torch.nn.BatchNorm2d.ca29bece3a917e43(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.ca29bece3a917e43(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.ca29bece3a917e43(1)_num_features | 160 |
torch.nn.BatchNorm2d.ca29bece3a917e43(1)_track_running_stats | true |
torch.nn.InvertedResidual.f5bad3d19caf7038(1)_stride | 1 |
torch.nn.Sequential.9a545e134e6c8e81(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.6dee8df488a9d8ce(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.d1a83e3746addef5(1)_bias | null |
torch.nn.Conv2d.d1a83e3746addef5(1)_dilation | [1, 1] |
torch.nn.Conv2d.d1a83e3746addef5(1)_groups | 1 |
torch.nn.Conv2d.d1a83e3746addef5(1)_in_channels | 160 |
torch.nn.Conv2d.d1a83e3746addef5(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.d1a83e3746addef5(1)_out_channels | 960 |
torch.nn.Conv2d.d1a83e3746addef5(1)_padding | [0, 0] |
torch.nn.Conv2d.d1a83e3746addef5(1)_padding_mode | "zeros" |
torch.nn.Conv2d.d1a83e3746addef5(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.5b4647885ce4e7e7(1)_affine | true |
torch.nn.BatchNorm2d.5b4647885ce4e7e7(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.5b4647885ce4e7e7(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.5b4647885ce4e7e7(1)_num_features | 960 |
torch.nn.BatchNorm2d.5b4647885ce4e7e7(1)_track_running_stats | true |
torch.nn.ReLU6.2700671c966144db(1)_inplace | true |
torch.nn.Conv2dNormActivation.60bb92e35c45e9c2(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.f1da87e9c2ec4802(1)_bias | null |
torch.nn.Conv2d.f1da87e9c2ec4802(1)_dilation | [1, 1] |
torch.nn.Conv2d.f1da87e9c2ec4802(1)_groups | 960 |
torch.nn.Conv2d.f1da87e9c2ec4802(1)_in_channels | 960 |
torch.nn.Conv2d.f1da87e9c2ec4802(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.f1da87e9c2ec4802(1)_out_channels | 960 |
torch.nn.Conv2d.f1da87e9c2ec4802(1)_padding | [1, 1] |
torch.nn.Conv2d.f1da87e9c2ec4802(1)_padding_mode | "zeros" |
torch.nn.Conv2d.f1da87e9c2ec4802(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.2f631f59535dfee8(1)_affine | true |
torch.nn.BatchNorm2d.2f631f59535dfee8(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.2f631f59535dfee8(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.2f631f59535dfee8(1)_num_features | 960 |
torch.nn.BatchNorm2d.2f631f59535dfee8(1)_track_running_stats | true |
torch.nn.ReLU6.a8dad917f36fa03a(1)_inplace | true |
torch.nn.Conv2d.ebb83745ca1c1831(1)_bias | null |
torch.nn.Conv2d.ebb83745ca1c1831(1)_dilation | [1, 1] |
torch.nn.Conv2d.ebb83745ca1c1831(1)_groups | 1 |
torch.nn.Conv2d.ebb83745ca1c1831(1)_in_channels | 960 |
torch.nn.Conv2d.ebb83745ca1c1831(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.ebb83745ca1c1831(1)_out_channels | 160 |
torch.nn.Conv2d.ebb83745ca1c1831(1)_padding | [0, 0] |
torch.nn.Conv2d.ebb83745ca1c1831(1)_padding_mode | "zeros" |
torch.nn.Conv2d.ebb83745ca1c1831(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.3288b37872692338(1)_affine | true |
torch.nn.BatchNorm2d.3288b37872692338(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.3288b37872692338(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.3288b37872692338(1)_num_features | 160 |
torch.nn.BatchNorm2d.3288b37872692338(1)_track_running_stats | true |
torch.nn.InvertedResidual.a28e3f0631bf4cb5(1)_stride | 1 |
torch.nn.Sequential.d6d1a9e185b16df4(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.3d6590f512a99ad8(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.c88e2cf566668277(1)_bias | null |
torch.nn.Conv2d.c88e2cf566668277(1)_dilation | [1, 1] |
torch.nn.Conv2d.c88e2cf566668277(1)_groups | 1 |
torch.nn.Conv2d.c88e2cf566668277(1)_in_channels | 160 |
torch.nn.Conv2d.c88e2cf566668277(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.c88e2cf566668277(1)_out_channels | 960 |
torch.nn.Conv2d.c88e2cf566668277(1)_padding | [0, 0] |
torch.nn.Conv2d.c88e2cf566668277(1)_padding_mode | "zeros" |
torch.nn.Conv2d.c88e2cf566668277(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.7308e299f7505a4f(1)_affine | true |
torch.nn.BatchNorm2d.7308e299f7505a4f(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.7308e299f7505a4f(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.7308e299f7505a4f(1)_num_features | 960 |
torch.nn.BatchNorm2d.7308e299f7505a4f(1)_track_running_stats | true |
torch.nn.ReLU6.a97cc7a430263ee(1)_inplace | true |
torch.nn.Conv2dNormActivation.8ecedd2096e17486(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.47e4c4c955656d78(1)_bias | null |
torch.nn.Conv2d.47e4c4c955656d78(1)_dilation | [1, 1] |
torch.nn.Conv2d.47e4c4c955656d78(1)_groups | 960 |
torch.nn.Conv2d.47e4c4c955656d78(1)_in_channels | 960 |
torch.nn.Conv2d.47e4c4c955656d78(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.47e4c4c955656d78(1)_out_channels | 960 |
torch.nn.Conv2d.47e4c4c955656d78(1)_padding | [1, 1] |
torch.nn.Conv2d.47e4c4c955656d78(1)_padding_mode | "zeros" |
torch.nn.Conv2d.47e4c4c955656d78(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.79342f95413789ae(1)_affine | true |
torch.nn.BatchNorm2d.79342f95413789ae(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.79342f95413789ae(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.79342f95413789ae(1)_num_features | 960 |
torch.nn.BatchNorm2d.79342f95413789ae(1)_track_running_stats | true |
torch.nn.ReLU6.68e9c44c83fa4714(1)_inplace | true |
torch.nn.Conv2d.98bc16a3c5078141(1)_bias | null |
torch.nn.Conv2d.98bc16a3c5078141(1)_dilation | [1, 1] |
torch.nn.Conv2d.98bc16a3c5078141(1)_groups | 1 |
torch.nn.Conv2d.98bc16a3c5078141(1)_in_channels | 960 |
torch.nn.Conv2d.98bc16a3c5078141(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.98bc16a3c5078141(1)_out_channels | 320 |
torch.nn.Conv2d.98bc16a3c5078141(1)_padding | [0, 0] |
torch.nn.Conv2d.98bc16a3c5078141(1)_padding_mode | "zeros" |
torch.nn.Conv2d.98bc16a3c5078141(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.5bd7a027c121e772(1)_affine | true |
torch.nn.BatchNorm2d.5bd7a027c121e772(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.5bd7a027c121e772(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.5bd7a027c121e772(1)_num_features | 320 |
torch.nn.BatchNorm2d.5bd7a027c121e772(1)_track_running_stats | true |
torch.nn.Conv2dNormActivation.fb79fc11bb4adc88(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.2695ce4eccaa4587(1)_bias | null |
torch.nn.Conv2d.2695ce4eccaa4587(1)_dilation | [1, 1] |
torch.nn.Conv2d.2695ce4eccaa4587(1)_groups | 1 |
torch.nn.Conv2d.2695ce4eccaa4587(1)_in_channels | 320 |
torch.nn.Conv2d.2695ce4eccaa4587(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.2695ce4eccaa4587(1)_out_channels | 1280 |
torch.nn.Conv2d.2695ce4eccaa4587(1)_padding | [0, 0] |
torch.nn.Conv2d.2695ce4eccaa4587(1)_padding_mode | "zeros" |
torch.nn.Conv2d.2695ce4eccaa4587(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.171eb7a7748de034(1)_affine | true |
torch.nn.BatchNorm2d.171eb7a7748de034(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.171eb7a7748de034(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.171eb7a7748de034(1)_num_features | 1280 |
torch.nn.BatchNorm2d.171eb7a7748de034(1)_track_running_stats | true |
torch.nn.ReLU6.f7ea9513ff9a286(1)_inplace | true |
torch.nn.InvertedResidual.f0da8ecf6bd5ef34(1)_stride | 2 |
torch.nn.Sequential.21fd92afd6d9672d(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.1a6437bdee76e2b(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.969faa8bafc1e6a1(1)_bias | null |
torch.nn.Conv2d.969faa8bafc1e6a1(1)_dilation | [1, 1] |
torch.nn.Conv2d.969faa8bafc1e6a1(1)_groups | 1 |
torch.nn.Conv2d.969faa8bafc1e6a1(1)_in_channels | 16 |
torch.nn.Conv2d.969faa8bafc1e6a1(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.969faa8bafc1e6a1(1)_out_channels | 96 |
torch.nn.Conv2d.969faa8bafc1e6a1(1)_padding | [0, 0] |
torch.nn.Conv2d.969faa8bafc1e6a1(1)_padding_mode | "zeros" |
torch.nn.Conv2d.969faa8bafc1e6a1(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.7f5cc505dfb88496(1)_affine | true |
torch.nn.BatchNorm2d.7f5cc505dfb88496(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.7f5cc505dfb88496(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.7f5cc505dfb88496(1)_num_features | 96 |
torch.nn.BatchNorm2d.7f5cc505dfb88496(1)_track_running_stats | true |
torch.nn.ReLU6.aceff88a96944088(1)_inplace | true |
torch.nn.Conv2dNormActivation.1da36454bdbb67c4(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.7ff82132e3c70f96(1)_bias | null |
torch.nn.Conv2d.7ff82132e3c70f96(1)_dilation | [1, 1] |
torch.nn.Conv2d.7ff82132e3c70f96(1)_groups | 96 |
torch.nn.Conv2d.7ff82132e3c70f96(1)_in_channels | 96 |
torch.nn.Conv2d.7ff82132e3c70f96(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.7ff82132e3c70f96(1)_out_channels | 96 |
torch.nn.Conv2d.7ff82132e3c70f96(1)_padding | [1, 1] |
torch.nn.Conv2d.7ff82132e3c70f96(1)_padding_mode | "zeros" |
torch.nn.Conv2d.7ff82132e3c70f96(1)_stride | [2, 2] |
torch.nn.BatchNorm2d.89ff958056348d98(1)_affine | true |
torch.nn.BatchNorm2d.89ff958056348d98(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.89ff958056348d98(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.89ff958056348d98(1)_num_features | 96 |
torch.nn.BatchNorm2d.89ff958056348d98(1)_track_running_stats | true |
torch.nn.ReLU6.3b2e16fc2eae3c34(1)_inplace | true |
torch.nn.Conv2d.8696d97961757c0c(1)_bias | null |
torch.nn.Conv2d.8696d97961757c0c(1)_dilation | [1, 1] |
torch.nn.Conv2d.8696d97961757c0c(1)_groups | 1 |
torch.nn.Conv2d.8696d97961757c0c(1)_in_channels | 96 |
torch.nn.Conv2d.8696d97961757c0c(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.8696d97961757c0c(1)_out_channels | 24 |
torch.nn.Conv2d.8696d97961757c0c(1)_padding | [0, 0] |
torch.nn.Conv2d.8696d97961757c0c(1)_padding_mode | "zeros" |
torch.nn.Conv2d.8696d97961757c0c(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.c8817f69d4157b4b(1)_affine | true |
torch.nn.BatchNorm2d.c8817f69d4157b4b(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.c8817f69d4157b4b(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.c8817f69d4157b4b(1)_num_features | 24 |
torch.nn.BatchNorm2d.c8817f69d4157b4b(1)_track_running_stats | true |
torch.nn.InvertedResidual.3b4095a04d6657f3(1)_stride | 1 |
torch.nn.Sequential.6bb91bf41d57ac0f(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.9e840bddddf85c10(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.4dd373a2b4e3b434(1)_bias | null |
torch.nn.Conv2d.4dd373a2b4e3b434(1)_dilation | [1, 1] |
torch.nn.Conv2d.4dd373a2b4e3b434(1)_groups | 1 |
torch.nn.Conv2d.4dd373a2b4e3b434(1)_in_channels | 24 |
torch.nn.Conv2d.4dd373a2b4e3b434(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.4dd373a2b4e3b434(1)_out_channels | 144 |
torch.nn.Conv2d.4dd373a2b4e3b434(1)_padding | [0, 0] |
torch.nn.Conv2d.4dd373a2b4e3b434(1)_padding_mode | "zeros" |
torch.nn.Conv2d.4dd373a2b4e3b434(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.2df85df7c075cfa0(1)_affine | true |
torch.nn.BatchNorm2d.2df85df7c075cfa0(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.2df85df7c075cfa0(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.2df85df7c075cfa0(1)_num_features | 144 |
torch.nn.BatchNorm2d.2df85df7c075cfa0(1)_track_running_stats | true |
torch.nn.ReLU6.47d34978f8588049(1)_inplace | true |
torch.nn.Conv2dNormActivation.7aae1a1e6a832dcf(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.fc9548add682d701(1)_bias | null |
torch.nn.Conv2d.fc9548add682d701(1)_dilation | [1, 1] |
torch.nn.Conv2d.fc9548add682d701(1)_groups | 144 |
torch.nn.Conv2d.fc9548add682d701(1)_in_channels | 144 |
torch.nn.Conv2d.fc9548add682d701(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.fc9548add682d701(1)_out_channels | 144 |
torch.nn.Conv2d.fc9548add682d701(1)_padding | [1, 1] |
torch.nn.Conv2d.fc9548add682d701(1)_padding_mode | "zeros" |
torch.nn.Conv2d.fc9548add682d701(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.9ecb3809e13eb79f(1)_affine | true |
torch.nn.BatchNorm2d.9ecb3809e13eb79f(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.9ecb3809e13eb79f(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.9ecb3809e13eb79f(1)_num_features | 144 |
torch.nn.BatchNorm2d.9ecb3809e13eb79f(1)_track_running_stats | true |
torch.nn.ReLU6.504dd1dbaf699f(1)_inplace | true |
torch.nn.Conv2d.b125ff949fe17907(1)_bias | null |
torch.nn.Conv2d.b125ff949fe17907(1)_dilation | [1, 1] |
torch.nn.Conv2d.b125ff949fe17907(1)_groups | 1 |
torch.nn.Conv2d.b125ff949fe17907(1)_in_channels | 144 |
torch.nn.Conv2d.b125ff949fe17907(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.b125ff949fe17907(1)_out_channels | 24 |
torch.nn.Conv2d.b125ff949fe17907(1)_padding | [0, 0] |
torch.nn.Conv2d.b125ff949fe17907(1)_padding_mode | "zeros" |
torch.nn.Conv2d.b125ff949fe17907(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.d37218972cc8868(1)_affine | true |
torch.nn.BatchNorm2d.d37218972cc8868(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.d37218972cc8868(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.d37218972cc8868(1)_num_features | 24 |
torch.nn.BatchNorm2d.d37218972cc8868(1)_track_running_stats | true |
torch.nn.InvertedResidual.97b2cdf7bdad4852(1)_stride | 2 |
torch.nn.Sequential.be536ffbbfcf2121(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.1b1967bc304cbbe5(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.2999294278d32b2f(1)_bias | null |
torch.nn.Conv2d.2999294278d32b2f(1)_dilation | [1, 1] |
torch.nn.Conv2d.2999294278d32b2f(1)_groups | 1 |
torch.nn.Conv2d.2999294278d32b2f(1)_in_channels | 24 |
torch.nn.Conv2d.2999294278d32b2f(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.2999294278d32b2f(1)_out_channels | 144 |
torch.nn.Conv2d.2999294278d32b2f(1)_padding | [0, 0] |
torch.nn.Conv2d.2999294278d32b2f(1)_padding_mode | "zeros" |
torch.nn.Conv2d.2999294278d32b2f(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.cd77997e9106e7e3(1)_affine | true |
torch.nn.BatchNorm2d.cd77997e9106e7e3(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.cd77997e9106e7e3(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.cd77997e9106e7e3(1)_num_features | 144 |
torch.nn.BatchNorm2d.cd77997e9106e7e3(1)_track_running_stats | true |
torch.nn.ReLU6.c984283389af2274(1)_inplace | true |
torch.nn.Conv2dNormActivation.a7f361cdd15d909c(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.b567d5bff744527a(1)_bias | null |
torch.nn.Conv2d.b567d5bff744527a(1)_dilation | [1, 1] |
torch.nn.Conv2d.b567d5bff744527a(1)_groups | 144 |
torch.nn.Conv2d.b567d5bff744527a(1)_in_channels | 144 |
torch.nn.Conv2d.b567d5bff744527a(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.b567d5bff744527a(1)_out_channels | 144 |
torch.nn.Conv2d.b567d5bff744527a(1)_padding | [1, 1] |
torch.nn.Conv2d.b567d5bff744527a(1)_padding_mode | "zeros" |
torch.nn.Conv2d.b567d5bff744527a(1)_stride | [2, 2] |
torch.nn.BatchNorm2d.822dca5cc99261c3(1)_affine | true |
torch.nn.BatchNorm2d.822dca5cc99261c3(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.822dca5cc99261c3(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.822dca5cc99261c3(1)_num_features | 144 |
torch.nn.BatchNorm2d.822dca5cc99261c3(1)_track_running_stats | true |
torch.nn.ReLU6.37444a3854c5a5c1(1)_inplace | true |
torch.nn.Conv2d.7e77e561181d02b9(1)_bias | null |
torch.nn.Conv2d.7e77e561181d02b9(1)_dilation | [1, 1] |
torch.nn.Conv2d.7e77e561181d02b9(1)_groups | 1 |
torch.nn.Conv2d.7e77e561181d02b9(1)_in_channels | 144 |
torch.nn.Conv2d.7e77e561181d02b9(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.7e77e561181d02b9(1)_out_channels | 32 |
torch.nn.Conv2d.7e77e561181d02b9(1)_padding | [0, 0] |
torch.nn.Conv2d.7e77e561181d02b9(1)_padding_mode | "zeros" |
torch.nn.Conv2d.7e77e561181d02b9(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.eea42e401afbe332(1)_affine | true |
torch.nn.BatchNorm2d.eea42e401afbe332(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.eea42e401afbe332(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.eea42e401afbe332(1)_num_features | 32 |
torch.nn.BatchNorm2d.eea42e401afbe332(1)_track_running_stats | true |
torch.nn.InvertedResidual.e568f7d7db15557(1)_stride | 1 |
torch.nn.Sequential.a4c7aa81ad4a8b0d(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.b4ee29162407f6ab(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.34cb6f376df26f7a(1)_bias | null |
torch.nn.Conv2d.34cb6f376df26f7a(1)_dilation | [1, 1] |
torch.nn.Conv2d.34cb6f376df26f7a(1)_groups | 1 |
torch.nn.Conv2d.34cb6f376df26f7a(1)_in_channels | 32 |
torch.nn.Conv2d.34cb6f376df26f7a(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.34cb6f376df26f7a(1)_out_channels | 192 |
torch.nn.Conv2d.34cb6f376df26f7a(1)_padding | [0, 0] |
torch.nn.Conv2d.34cb6f376df26f7a(1)_padding_mode | "zeros" |
torch.nn.Conv2d.34cb6f376df26f7a(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.fb693110c35e508a(1)_affine | true |
torch.nn.BatchNorm2d.fb693110c35e508a(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.fb693110c35e508a(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.fb693110c35e508a(1)_num_features | 192 |
torch.nn.BatchNorm2d.fb693110c35e508a(1)_track_running_stats | true |
torch.nn.ReLU6.1d88793acb1dc769(1)_inplace | true |
torch.nn.Conv2dNormActivation.b2414fdb24bf795d(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.5a9ac932146a6e0f(1)_bias | null |
torch.nn.Conv2d.5a9ac932146a6e0f(1)_dilation | [1, 1] |
torch.nn.Conv2d.5a9ac932146a6e0f(1)_groups | 192 |
torch.nn.Conv2d.5a9ac932146a6e0f(1)_in_channels | 192 |
torch.nn.Conv2d.5a9ac932146a6e0f(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.5a9ac932146a6e0f(1)_out_channels | 192 |
torch.nn.Conv2d.5a9ac932146a6e0f(1)_padding | [1, 1] |
torch.nn.Conv2d.5a9ac932146a6e0f(1)_padding_mode | "zeros" |
torch.nn.Conv2d.5a9ac932146a6e0f(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.4d37add998425249(1)_affine | true |
torch.nn.BatchNorm2d.4d37add998425249(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.4d37add998425249(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.4d37add998425249(1)_num_features | 192 |
torch.nn.BatchNorm2d.4d37add998425249(1)_track_running_stats | true |
torch.nn.ReLU6.8d39fb0012d9761c(1)_inplace | true |
torch.nn.Conv2d.54b33ea8b384f770(1)_bias | null |
torch.nn.Conv2d.54b33ea8b384f770(1)_dilation | [1, 1] |
torch.nn.Conv2d.54b33ea8b384f770(1)_groups | 1 |
torch.nn.Conv2d.54b33ea8b384f770(1)_in_channels | 192 |
torch.nn.Conv2d.54b33ea8b384f770(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.54b33ea8b384f770(1)_out_channels | 32 |
torch.nn.Conv2d.54b33ea8b384f770(1)_padding | [0, 0] |
torch.nn.Conv2d.54b33ea8b384f770(1)_padding_mode | "zeros" |
torch.nn.Conv2d.54b33ea8b384f770(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.5eaa646978fb84b2(1)_affine | true |
torch.nn.BatchNorm2d.5eaa646978fb84b2(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.5eaa646978fb84b2(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.5eaa646978fb84b2(1)_num_features | 32 |
torch.nn.BatchNorm2d.5eaa646978fb84b2(1)_track_running_stats | true |
torch.nn.InvertedResidual.76d5cbdde1c65ce0(1)_stride | 1 |
torch.nn.Sequential.33d498b429b493e(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.bf3c6538cb32ce57(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.ac108f94ff10586c(1)_bias | null |
torch.nn.Conv2d.ac108f94ff10586c(1)_dilation | [1, 1] |
torch.nn.Conv2d.ac108f94ff10586c(1)_groups | 1 |
torch.nn.Conv2d.ac108f94ff10586c(1)_in_channels | 32 |
torch.nn.Conv2d.ac108f94ff10586c(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.ac108f94ff10586c(1)_out_channels | 192 |
torch.nn.Conv2d.ac108f94ff10586c(1)_padding | [0, 0] |
torch.nn.Conv2d.ac108f94ff10586c(1)_padding_mode | "zeros" |
torch.nn.Conv2d.ac108f94ff10586c(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.7256e86abf8bbdc9(1)_affine | true |
torch.nn.BatchNorm2d.7256e86abf8bbdc9(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.7256e86abf8bbdc9(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.7256e86abf8bbdc9(1)_num_features | 192 |
torch.nn.BatchNorm2d.7256e86abf8bbdc9(1)_track_running_stats | true |
torch.nn.ReLU6.13790a8e46b28323(1)_inplace | true |
torch.nn.Conv2dNormActivation.24323db9d87eeee0(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.cfdfdace795dfd23(1)_bias | null |
torch.nn.Conv2d.cfdfdace795dfd23(1)_dilation | [1, 1] |
torch.nn.Conv2d.cfdfdace795dfd23(1)_groups | 192 |
torch.nn.Conv2d.cfdfdace795dfd23(1)_in_channels | 192 |
torch.nn.Conv2d.cfdfdace795dfd23(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.cfdfdace795dfd23(1)_out_channels | 192 |
torch.nn.Conv2d.cfdfdace795dfd23(1)_padding | [1, 1] |
torch.nn.Conv2d.cfdfdace795dfd23(1)_padding_mode | "zeros" |
torch.nn.Conv2d.cfdfdace795dfd23(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.e918d1d6e195bd99(1)_affine | true |
torch.nn.BatchNorm2d.e918d1d6e195bd99(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.e918d1d6e195bd99(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.e918d1d6e195bd99(1)_num_features | 192 |
torch.nn.BatchNorm2d.e918d1d6e195bd99(1)_track_running_stats | true |
torch.nn.ReLU6.af96ce1d1ff2ea5b(1)_inplace | true |
torch.nn.Conv2d.1c25cb82bd86bcc(1)_bias | null |
torch.nn.Conv2d.1c25cb82bd86bcc(1)_dilation | [1, 1] |
torch.nn.Conv2d.1c25cb82bd86bcc(1)_groups | 1 |
torch.nn.Conv2d.1c25cb82bd86bcc(1)_in_channels | 192 |
torch.nn.Conv2d.1c25cb82bd86bcc(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.1c25cb82bd86bcc(1)_out_channels | 32 |
torch.nn.Conv2d.1c25cb82bd86bcc(1)_padding | [0, 0] |
torch.nn.Conv2d.1c25cb82bd86bcc(1)_padding_mode | "zeros" |
torch.nn.Conv2d.1c25cb82bd86bcc(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.60e14a19e4083475(1)_affine | true |
torch.nn.BatchNorm2d.60e14a19e4083475(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.60e14a19e4083475(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.60e14a19e4083475(1)_num_features | 32 |
torch.nn.BatchNorm2d.60e14a19e4083475(1)_track_running_stats | true |
torch.nn.InvertedResidual.7f6c5cff96cca6cd(1)_stride | 2 |
torch.nn.Sequential.df3e93332232d2cd(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.867cc203469d4152(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.367aac2925a72332(1)_bias | null |
torch.nn.Conv2d.367aac2925a72332(1)_dilation | [1, 1] |
torch.nn.Conv2d.367aac2925a72332(1)_groups | 1 |
torch.nn.Conv2d.367aac2925a72332(1)_in_channels | 32 |
torch.nn.Conv2d.367aac2925a72332(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.367aac2925a72332(1)_out_channels | 192 |
torch.nn.Conv2d.367aac2925a72332(1)_padding | [0, 0] |
torch.nn.Conv2d.367aac2925a72332(1)_padding_mode | "zeros" |
torch.nn.Conv2d.367aac2925a72332(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.1e03fbf6bcefd13a(1)_affine | true |
torch.nn.BatchNorm2d.1e03fbf6bcefd13a(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.1e03fbf6bcefd13a(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.1e03fbf6bcefd13a(1)_num_features | 192 |
torch.nn.BatchNorm2d.1e03fbf6bcefd13a(1)_track_running_stats | true |
torch.nn.ReLU6.4dcaca5d9df6d83b(1)_inplace | true |
torch.nn.Conv2dNormActivation.58d784dfb59c2668(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.220090fdfbabd98e(1)_bias | null |
torch.nn.Conv2d.220090fdfbabd98e(1)_dilation | [1, 1] |
torch.nn.Conv2d.220090fdfbabd98e(1)_groups | 192 |
torch.nn.Conv2d.220090fdfbabd98e(1)_in_channels | 192 |
torch.nn.Conv2d.220090fdfbabd98e(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.220090fdfbabd98e(1)_out_channels | 192 |
torch.nn.Conv2d.220090fdfbabd98e(1)_padding | [1, 1] |
torch.nn.Conv2d.220090fdfbabd98e(1)_padding_mode | "zeros" |
torch.nn.Conv2d.220090fdfbabd98e(1)_stride | [2, 2] |
torch.nn.BatchNorm2d.20da4624d9b78387(1)_affine | true |
torch.nn.BatchNorm2d.20da4624d9b78387(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.20da4624d9b78387(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.20da4624d9b78387(1)_num_features | 192 |
torch.nn.BatchNorm2d.20da4624d9b78387(1)_track_running_stats | true |
torch.nn.ReLU6.fe6df05d3b89ad08(1)_inplace | true |
torch.nn.Conv2d.abd9c157519bd23f(1)_bias | null |
torch.nn.Conv2d.abd9c157519bd23f(1)_dilation | [1, 1] |
torch.nn.Conv2d.abd9c157519bd23f(1)_groups | 1 |
torch.nn.Conv2d.abd9c157519bd23f(1)_in_channels | 192 |
torch.nn.Conv2d.abd9c157519bd23f(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.abd9c157519bd23f(1)_out_channels | 64 |
torch.nn.Conv2d.abd9c157519bd23f(1)_padding | [0, 0] |
torch.nn.Conv2d.abd9c157519bd23f(1)_padding_mode | "zeros" |
torch.nn.Conv2d.abd9c157519bd23f(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.e0b1ec3d6eaea1f(1)_affine | true |
torch.nn.BatchNorm2d.e0b1ec3d6eaea1f(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.e0b1ec3d6eaea1f(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.e0b1ec3d6eaea1f(1)_num_features | 64 |
torch.nn.BatchNorm2d.e0b1ec3d6eaea1f(1)_track_running_stats | true |
torch.nn.InvertedResidual.efac967c396f32c8(1)_stride | 1 |
torch.nn.Sequential.4b38098fc5fd644(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.612e591646d5be06(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.91d77567a9235080(1)_bias | null |
torch.nn.Conv2d.91d77567a9235080(1)_dilation | [1, 1] |
torch.nn.Conv2d.91d77567a9235080(1)_groups | 1 |
torch.nn.Conv2d.91d77567a9235080(1)_in_channels | 64 |
torch.nn.Conv2d.91d77567a9235080(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.91d77567a9235080(1)_out_channels | 384 |
torch.nn.Conv2d.91d77567a9235080(1)_padding | [0, 0] |
torch.nn.Conv2d.91d77567a9235080(1)_padding_mode | "zeros" |
torch.nn.Conv2d.91d77567a9235080(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.7c745fbd263cee4b(1)_affine | true |
torch.nn.BatchNorm2d.7c745fbd263cee4b(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.7c745fbd263cee4b(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.7c745fbd263cee4b(1)_num_features | 384 |
torch.nn.BatchNorm2d.7c745fbd263cee4b(1)_track_running_stats | true |
torch.nn.ReLU6.c891ffbc8b39d3da(1)_inplace | true |
torch.nn.Conv2dNormActivation.b6eae524fe4275(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.d02ab526ea36e0e4(1)_bias | null |
torch.nn.Conv2d.d02ab526ea36e0e4(1)_dilation | [1, 1] |
torch.nn.Conv2d.d02ab526ea36e0e4(1)_groups | 384 |
torch.nn.Conv2d.d02ab526ea36e0e4(1)_in_channels | 384 |
torch.nn.Conv2d.d02ab526ea36e0e4(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.d02ab526ea36e0e4(1)_out_channels | 384 |
torch.nn.Conv2d.d02ab526ea36e0e4(1)_padding | [1, 1] |
torch.nn.Conv2d.d02ab526ea36e0e4(1)_padding_mode | "zeros" |
torch.nn.Conv2d.d02ab526ea36e0e4(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.5d8380bdc85306c5(1)_affine | true |
torch.nn.BatchNorm2d.5d8380bdc85306c5(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.5d8380bdc85306c5(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.5d8380bdc85306c5(1)_num_features | 384 |
torch.nn.BatchNorm2d.5d8380bdc85306c5(1)_track_running_stats | true |
torch.nn.ReLU6.9dd5d46595604c3f(1)_inplace | true |
torch.nn.Conv2d.9a0fd3b37b31c7b2(1)_bias | null |
torch.nn.Conv2d.9a0fd3b37b31c7b2(1)_dilation | [1, 1] |
torch.nn.Conv2d.9a0fd3b37b31c7b2(1)_groups | 1 |
torch.nn.Conv2d.9a0fd3b37b31c7b2(1)_in_channels | 384 |
torch.nn.Conv2d.9a0fd3b37b31c7b2(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.9a0fd3b37b31c7b2(1)_out_channels | 64 |
torch.nn.Conv2d.9a0fd3b37b31c7b2(1)_padding | [0, 0] |
torch.nn.Conv2d.9a0fd3b37b31c7b2(1)_padding_mode | "zeros" |
torch.nn.Conv2d.9a0fd3b37b31c7b2(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.1d731781c571242(1)_affine | true |
torch.nn.BatchNorm2d.1d731781c571242(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.1d731781c571242(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.1d731781c571242(1)_num_features | 64 |
torch.nn.BatchNorm2d.1d731781c571242(1)_track_running_stats | true |
torch.nn.InvertedResidual.74f37780efb711(1)_stride | 1 |
torch.nn.Sequential.ba2bfe61122dc157(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}] |
torch.nn.Conv2dNormActivation.5651feab767d3b7f(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.8945c4491ab333a(1)_bias | null |
torch.nn.Conv2d.8945c4491ab333a(1)_dilation | [1, 1] |
torch.nn.Conv2d.8945c4491ab333a(1)_groups | 1 |
torch.nn.Conv2d.8945c4491ab333a(1)_in_channels | 64 |
torch.nn.Conv2d.8945c4491ab333a(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.8945c4491ab333a(1)_out_channels | 384 |
torch.nn.Conv2d.8945c4491ab333a(1)_padding | [0, 0] |
torch.nn.Conv2d.8945c4491ab333a(1)_padding_mode | "zeros" |
torch.nn.Conv2d.8945c4491ab333a(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.234c9a1f842e0d8f(1)_affine | true |
torch.nn.BatchNorm2d.234c9a1f842e0d8f(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.234c9a1f842e0d8f(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.234c9a1f842e0d8f(1)_num_features | 384 |
torch.nn.BatchNorm2d.234c9a1f842e0d8f(1)_track_running_stats | true |
torch.nn.ReLU6.980cc77a767d956a(1)_inplace | true |
torch.nn.Conv2dNormActivation.538dbb9783d67828(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.Conv2d.ae203a87be6a3d76(1)_bias | null |
torch.nn.Conv2d.ae203a87be6a3d76(1)_dilation | [1, 1] |
torch.nn.Conv2d.ae203a87be6a3d76(1)_groups | 384 |
torch.nn.Conv2d.ae203a87be6a3d76(1)_in_channels | 384 |
torch.nn.Conv2d.ae203a87be6a3d76(1)_kernel_size | [3, 3] |
torch.nn.Conv2d.ae203a87be6a3d76(1)_out_channels | 384 |
torch.nn.Conv2d.ae203a87be6a3d76(1)_padding | [1, 1] |
torch.nn.Conv2d.ae203a87be6a3d76(1)_padding_mode | "zeros" |
torch.nn.Conv2d.ae203a87be6a3d76(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.62cf2fa544d43811(1)_affine | true |
torch.nn.BatchNorm2d.62cf2fa544d43811(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.62cf2fa544d43811(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.62cf2fa544d43811(1)_num_features | 384 |
torch.nn.BatchNorm2d.62cf2fa544d43811(1)_track_running_stats | true |
torch.nn.ReLU6.50e26eb72acfba30(1)_inplace | true |
torch.nn.Conv2d.82ec17d5b07fb429(1)_bias | null |
torch.nn.Conv2d.82ec17d5b07fb429(1)_dilation | [1, 1] |
torch.nn.Conv2d.82ec17d5b07fb429(1)_groups | 1 |
torch.nn.Conv2d.82ec17d5b07fb429(1)_in_channels | 384 |
torch.nn.Conv2d.82ec17d5b07fb429(1)_kernel_size | [1, 1] |
torch.nn.Conv2d.82ec17d5b07fb429(1)_out_channels | 64 |
torch.nn.Conv2d.82ec17d5b07fb429(1)_padding | [0, 0] |
torch.nn.Conv2d.82ec17d5b07fb429(1)_padding_mode | "zeros" |
torch.nn.Conv2d.82ec17d5b07fb429(1)_stride | [1, 1] |
torch.nn.BatchNorm2d.5ba919c938c18c76(1)_affine | true |
torch.nn.BatchNorm2d.5ba919c938c18c76(1)_eps | 1e-05 |
torch.nn.BatchNorm2d.5ba919c938c18c76(1)_momentum | 0.1 |
torch.nn.BatchNorm2d.5ba919c938c18c76(1)_num_features | 64 |
torch.nn.BatchNorm2d.5ba919c938c18c76(1)_track_running_stats | true |
torch.nn.Sequential.6f49752c6f7dafe5(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}] |
torch.nn.Linear.374681021bbfa2a4(1)_in_features | 1280 |
torch.nn.Linear.374681021bbfa2a4(1)_out_features | 67 |
torch.nn.Softmax.e10c6f984c390e3a(1)_dim | 1 |
torch.nn.AdaptiveAvgPool2d.359b9b5e71d0470d(1)_output_size | 1 |