Run
10594481

Run 10594481

Task 3 (Supervised Classification) kr-vs-kp Uploaded 07-04-2024 by Gonçalo Esteves
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_1.4.1.post1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,one hotencoder=sklearn.preprocessing._encoders.OneHotEncoder),decisiontreeclass ifier=sklearn.tree._classes.DecisionTreeClassifier)(10)A sequence of data transformers with an optional final predictor. `Pipeline` allows you to sequentially apply a list of transformers to preprocess the data and, if desired, conclude the sequence with a final :term:`predictor` for predictive modeling. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final :term:`estimator` only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`. For an example use case of `Pipeline` combined with :class:`~s...
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),decisiontreeclassifier=sklearn.tree._classes.DecisionTreeClassifier)(10)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),decisiontreeclassifier=sklearn.tree._classes.DecisionTreeClassifier)(10)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "decisiontreeclassifier", "step_name": "decisiontreeclassifier"}}]
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),decisiontreeclassifier=sklearn.tree._classes.DecisionTreeClassifier)(10)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(9)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(9)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(9)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(9)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(9)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}]
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(9)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(9)_verbose_feature_names_outtrue
sklearn.impute._base.SimpleImputer(55)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(55)_copytrue
sklearn.impute._base.SimpleImputer(55)_fill_valuenull
sklearn.impute._base.SimpleImputer(55)_keep_empty_featuresfalse
sklearn.impute._base.SimpleImputer(55)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(55)_strategy"mean"
sklearn.preprocessing._encoders.OneHotEncoder(51)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(51)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(51)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(51)_feature_name_combiner"concat"
sklearn.preprocessing._encoders.OneHotEncoder(51)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(51)_max_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(51)_min_frequencynull
sklearn.preprocessing._encoders.OneHotEncoder(51)_sparse_outputtrue
sklearn.tree._classes.DecisionTreeClassifier(47)_ccp_alpha0.0
sklearn.tree._classes.DecisionTreeClassifier(47)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(47)_criterion"gini"
sklearn.tree._classes.DecisionTreeClassifier(47)_max_depthnull
sklearn.tree._classes.DecisionTreeClassifier(47)_max_featuresnull
sklearn.tree._classes.DecisionTreeClassifier(47)_max_leaf_nodesnull
sklearn.tree._classes.DecisionTreeClassifier(47)_min_impurity_decrease0.0
sklearn.tree._classes.DecisionTreeClassifier(47)_min_samples_leaf1
sklearn.tree._classes.DecisionTreeClassifier(47)_min_samples_split2
sklearn.tree._classes.DecisionTreeClassifier(47)_min_weight_fraction_leaf0.0
sklearn.tree._classes.DecisionTreeClassifier(47)_monotonic_cstnull
sklearn.tree._classes.DecisionTreeClassifier(47)_random_state19379
sklearn.tree._classes.DecisionTreeClassifier(47)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9956 ± 0.003
Per class
Cross-validation details (10-fold Crossvalidation)
0.9956 ± 0.003
Per class
Cross-validation details (10-fold Crossvalidation)
0.9912 ± 0.0061
Cross-validation details (10-fold Crossvalidation)
0.9912 ± 0.0061
Cross-validation details (10-fold Crossvalidation)
0.0044 ± 0.003
Cross-validation details (10-fold Crossvalidation)
0.499 ± 0
Cross-validation details (10-fold Crossvalidation)
0.9956 ± 0.003
Cross-validation details (10-fold Crossvalidation)
3196
Per class
Cross-validation details (10-fold Crossvalidation)
0.9956 ± 0.003
Per class
Cross-validation details (10-fold Crossvalidation)
0.9956 ± 0.003
Cross-validation details (10-fold Crossvalidation)
0.9986 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.0088 ± 0.0061
Cross-validation details (10-fold Crossvalidation)
0.4995 ± 0
Cross-validation details (10-fold Crossvalidation)
0.0662 ± 0.0334
Cross-validation details (10-fold Crossvalidation)
0.1325 ± 0.0669
Cross-validation details (10-fold Crossvalidation)
0.9956 ± 0.003
Cross-validation details (10-fold Crossvalidation)