Run
10594209

Run 10594209

Task 10101 (Supervised Classification) blood-transfusion-service-center Uploaded 22-03-2024 by Jun Tan
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(40)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree.
sklearn.ensemble._forest.RandomForestClassifier(40)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(40)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(40)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(40)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(40)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(40)_max_features"auto"
sklearn.ensemble._forest.RandomForestClassifier(40)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(40)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(40)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(40)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(40)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(40)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(40)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(40)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(40)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(40)_random_state4692
sklearn.ensemble._forest.RandomForestClassifier(40)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(40)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.6828 ± 0.0614
Per class
Cross-validation details (10-fold Crossvalidation)
0.7303 ± 0.0464
Per class
Cross-validation details (10-fold Crossvalidation)
0.2196 ± 0.1362
Cross-validation details (10-fold Crossvalidation)
0.0825 ± 0.0962
Cross-validation details (10-fold Crossvalidation)
0.3043 ± 0.0257
Cross-validation details (10-fold Crossvalidation)
0.363 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
0.7487 ± 0.0425
Cross-validation details (10-fold Crossvalidation)
748
Per class
Cross-validation details (10-fold Crossvalidation)
0.7218 ± 0.0521
Per class
Cross-validation details (10-fold Crossvalidation)
0.7487 ± 0.0425
Cross-validation details (10-fold Crossvalidation)
0.7916 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
0.8383 ± 0.07
Cross-validation details (10-fold Crossvalidation)
0.4258 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.4298 ± 0.0291
Cross-validation details (10-fold Crossvalidation)
1.0093 ± 0.0684
Cross-validation details (10-fold Crossvalidation)
0.5975 ± 0.0649
Cross-validation details (10-fold Crossvalidation)