Run
10594106

Run 10594106

Task 3 (Supervised Classification) kr-vs-kp Uploaded 02-02-2024 by Jano P
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.One HotEncoder,functiontransformer=sklearn.preprocessing._function_transformer. FunctionTransformer,symbolicclassifier=HROCH.classifier.SymbolicClassifier( estimator=HROCH.classifier.NonlinearLogisticRegressor))(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`. For an example use case of `Pipeline` combined with :class:`~sklearn.model_selection.GridSearchCV`, refer to :ref:`sphx_glr_auto_examples_compose_plot_compare_reduction.py`. The example :ref:`sphx_glr_auto_exampl...
HROCH.classifier.NonlinearLogisticRegressor(1)_algo_settingsnull
HROCH.classifier.NonlinearLogisticRegressor(1)_class_weightnull
HROCH.classifier.NonlinearLogisticRegressor(1)_code_settingsnull
HROCH.classifier.NonlinearLogisticRegressor(1)_const_settingsnull
HROCH.classifier.NonlinearLogisticRegressor(1)_cv_paramsnull
HROCH.classifier.NonlinearLogisticRegressor(1)_feature_probsnull
HROCH.classifier.NonlinearLogisticRegressor(1)_init_const_settingsnull
HROCH.classifier.NonlinearLogisticRegressor(1)_iter_limit0
HROCH.classifier.NonlinearLogisticRegressor(1)_metric"LogLoss"
HROCH.classifier.NonlinearLogisticRegressor(1)_num_threads1
HROCH.classifier.NonlinearLogisticRegressor(1)_population_settingsnull
HROCH.classifier.NonlinearLogisticRegressor(1)_precision"f32"
HROCH.classifier.NonlinearLogisticRegressor(1)_problem"math"
HROCH.classifier.NonlinearLogisticRegressor(1)_random_state0
HROCH.classifier.NonlinearLogisticRegressor(1)_target_clipnull
HROCH.classifier.NonlinearLogisticRegressor(1)_time_limit5.0
HROCH.classifier.NonlinearLogisticRegressor(1)_transformation"LOGISTIC"
HROCH.classifier.NonlinearLogisticRegressor(1)_verbose0
HROCH.classifier.NonlinearLogisticRegressor(1)_warm_startfalse
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,functiontransformer=sklearn.preprocessing._function_transformer.FunctionTransformer,symbolicclassifier=HROCH.classifier.SymbolicClassifier(estimator=HROCH.classifier.NonlinearLogisticRegressor))(1)_memorynull
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,functiontransformer=sklearn.preprocessing._function_transformer.FunctionTransformer,symbolicclassifier=HROCH.classifier.SymbolicClassifier(estimator=HROCH.classifier.NonlinearLogisticRegressor))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "functiontransformer", "step_name": "functiontransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "symbolicclassifier", "step_name": "symbolicclassifier"}}]
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,functiontransformer=sklearn.preprocessing._function_transformer.FunctionTransformer,symbolicclassifier=HROCH.classifier.SymbolicClassifier(estimator=HROCH.classifier.NonlinearLogisticRegressor))(1)_verbosefalse
sklearn.preprocessing._encoders.OneHotEncoder(50)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(50)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(50)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(50)_feature_name_combiner"concat"
sklearn.preprocessing._encoders.OneHotEncoder(50)_handle_unknown"infrequent_if_exist"
sklearn.preprocessing._encoders.OneHotEncoder(50)_max_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(50)_min_frequencynull
sklearn.preprocessing._encoders.OneHotEncoder(50)_sparse"deprecated"
sklearn.preprocessing._encoders.OneHotEncoder(50)_sparse_outputtrue
sklearn.preprocessing._function_transformer.FunctionTransformer(6)_accept_sparsetrue
sklearn.preprocessing._function_transformer.FunctionTransformer(6)_check_inversetrue
sklearn.preprocessing._function_transformer.FunctionTransformer(6)_feature_names_outnull
sklearn.preprocessing._function_transformer.FunctionTransformer(6)_func{"oml-python:serialized_object": "function", "value": "__main__."}
sklearn.preprocessing._function_transformer.FunctionTransformer(6)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.FunctionTransformer(6)_inverse_funcnull
sklearn.preprocessing._function_transformer.FunctionTransformer(6)_kw_argsnull
sklearn.preprocessing._function_transformer.FunctionTransformer(6)_validatefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9823 ± 0.0063
Per class
Cross-validation details (10-fold Crossvalidation)
0.9418 ± 0.0096
Per class
Cross-validation details (10-fold Crossvalidation)
0.8833 ± 0.0191
Cross-validation details (10-fold Crossvalidation)
0.8214 ± 0.014
Cross-validation details (10-fold Crossvalidation)
0.0974 ± 0.0068
Cross-validation details (10-fold Crossvalidation)
0.499 ± 0
Cross-validation details (10-fold Crossvalidation)
0.9418 ± 0.0096
Cross-validation details (10-fold Crossvalidation)
3196
Per class
Cross-validation details (10-fold Crossvalidation)
0.9419 ± 0.0095
Per class
Cross-validation details (10-fold Crossvalidation)
0.9418 ± 0.0096
Cross-validation details (10-fold Crossvalidation)
0.9986 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.1953 ± 0.0137
Cross-validation details (10-fold Crossvalidation)
0.4995 ± 0
Cross-validation details (10-fold Crossvalidation)
0.2151 ± 0.0187
Cross-validation details (10-fold Crossvalidation)
0.4307 ± 0.0374
Cross-validation details (10-fold Crossvalidation)
0.9413 ± 0.0094
Cross-validation details (10-fold Crossvalidation)