Run
10594104

Run 10594104

Task 3954 (Supervised Classification) MagicTelescope Uploaded 31-01-2024 by Spider King
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(41)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree.
sklearn.ensemble._forest.RandomForestClassifier(41)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(41)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(41)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(41)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(41)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(41)_max_features"sqrt"
sklearn.ensemble._forest.RandomForestClassifier(41)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(41)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(41)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(41)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(41)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(41)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(41)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(41)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(41)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(41)_random_state2709
sklearn.ensemble._forest.RandomForestClassifier(41)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(41)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9369 ± 0.0059
Per class
Cross-validation details (10-fold Crossvalidation)
0.8792 ± 0.0059
Per class
Cross-validation details (10-fold Crossvalidation)
0.732 ± 0.0134
Cross-validation details (10-fold Crossvalidation)
0.5974 ± 0.0098
Cross-validation details (10-fold Crossvalidation)
0.1943 ± 0.0039
Cross-validation details (10-fold Crossvalidation)
0.456 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.8811 ± 0.0056
Cross-validation details (10-fold Crossvalidation)
19020
Per class
Cross-validation details (10-fold Crossvalidation)
0.8808 ± 0.0057
Per class
Cross-validation details (10-fold Crossvalidation)
0.8811 ± 0.0056
Cross-validation details (10-fold Crossvalidation)
0.9355 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.4262 ± 0.0086
Cross-validation details (10-fold Crossvalidation)
0.4775 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.2988 ± 0.0058
Cross-validation details (10-fold Crossvalidation)
0.6259 ± 0.0121
Cross-validation details (10-fold Crossvalidation)
0.856 ± 0.0078
Cross-validation details (10-fold Crossvalidation)