Run
10594088

Run 10594088

Task 32 (Supervised Classification) pendigits Uploaded 12-01-2024 by DJ Joffrey
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estima tor=sklearn.tree._classes.DecisionTreeClassifier)(30)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`. For an example use case of `Pipeline` combined with :class:`~sklearn.model_selection.GridSearchCV`, refer to :ref:`sphx_glr_auto_examples_compose_plot_compare_reduction.py`. The example :ref:`sphx_glr_auto_exampl...
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.tree._classes.DecisionTreeClassifier)(30)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.tree._classes.DecisionTreeClassifier)(30)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.tree._classes.DecisionTreeClassifier)(30)_verbosefalse
sklearn.impute._base.SimpleImputer(52)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(52)_copytrue
sklearn.impute._base.SimpleImputer(52)_fill_valuenull
sklearn.impute._base.SimpleImputer(52)_keep_empty_featuresfalse
sklearn.impute._base.SimpleImputer(52)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(52)_strategy"mean"
sklearn.tree._classes.DecisionTreeClassifier(43)_ccp_alpha0.0
sklearn.tree._classes.DecisionTreeClassifier(43)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(43)_criterion"gini"
sklearn.tree._classes.DecisionTreeClassifier(43)_max_depthnull
sklearn.tree._classes.DecisionTreeClassifier(43)_max_featuresnull
sklearn.tree._classes.DecisionTreeClassifier(43)_max_leaf_nodesnull
sklearn.tree._classes.DecisionTreeClassifier(43)_min_impurity_decrease0.0
sklearn.tree._classes.DecisionTreeClassifier(43)_min_samples_leaf1
sklearn.tree._classes.DecisionTreeClassifier(43)_min_samples_split2
sklearn.tree._classes.DecisionTreeClassifier(43)_min_weight_fraction_leaf0.0
sklearn.tree._classes.DecisionTreeClassifier(43)_random_state58420
sklearn.tree._classes.DecisionTreeClassifier(43)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9793 ± 0.0033
Per class
Cross-validation details (10-fold Crossvalidation)
0.9627 ± 0.0059
Per class
Cross-validation details (10-fold Crossvalidation)
0.9585 ± 0.0066
Cross-validation details (10-fold Crossvalidation)
0.961 ± 0.0062
Cross-validation details (10-fold Crossvalidation)
0.0075 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
0.18 ± 0
Cross-validation details (10-fold Crossvalidation)
0.9627 ± 0.0059
Cross-validation details (10-fold Crossvalidation)
10992
Per class
Cross-validation details (10-fold Crossvalidation)
0.9627 ± 0.0058
Per class
Cross-validation details (10-fold Crossvalidation)
0.9627 ± 0.0059
Cross-validation details (10-fold Crossvalidation)
3.3208 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.0415 ± 0.0066
Cross-validation details (10-fold Crossvalidation)
0.3 ± 0
Cross-validation details (10-fold Crossvalidation)
0.0864 ± 0.007
Cross-validation details (10-fold Crossvalidation)
0.2879 ± 0.0235
Cross-validation details (10-fold Crossvalidation)
0.9627 ± 0.0059
Cross-validation details (10-fold Crossvalidation)