Run
10594075

Run 10594075

Task 3954 (Supervised Classification) MagicTelescope Uploaded 24-12-2023 by Neale Vincent
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(40)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree.
sklearn.ensemble._forest.RandomForestClassifier(40)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(40)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(40)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(40)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(40)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(40)_max_features"auto"
sklearn.ensemble._forest.RandomForestClassifier(40)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(40)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(40)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(40)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(40)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(40)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(40)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(40)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(40)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(40)_random_state51618
sklearn.ensemble._forest.RandomForestClassifier(40)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(40)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9366 ± 0.0061
Per class
Cross-validation details (10-fold Crossvalidation)
0.8788 ± 0.0079
Per class
Cross-validation details (10-fold Crossvalidation)
0.731 ± 0.0178
Cross-validation details (10-fold Crossvalidation)
0.5971 ± 0.0093
Cross-validation details (10-fold Crossvalidation)
0.1944 ± 0.0038
Cross-validation details (10-fold Crossvalidation)
0.456 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.8808 ± 0.0074
Cross-validation details (10-fold Crossvalidation)
19020
Per class
Cross-validation details (10-fold Crossvalidation)
0.8806 ± 0.0074
Per class
Cross-validation details (10-fold Crossvalidation)
0.8808 ± 0.0074
Cross-validation details (10-fold Crossvalidation)
0.9355 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.4263 ± 0.0083
Cross-validation details (10-fold Crossvalidation)
0.4775 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.2992 ± 0.0059
Cross-validation details (10-fold Crossvalidation)
0.6266 ± 0.0124
Cross-validation details (10-fold Crossvalidation)
0.8552 ± 0.0102
Cross-validation details (10-fold Crossvalidation)