Run
10594051

Run 10594051

Task 9983 (Supervised Classification) eeg-eye-state Uploaded 08-08-2023 by Suraphum Maneeratchakit
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(32)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree.
sklearn.ensemble._forest.RandomForestClassifier(32)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(32)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(32)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(32)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(32)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(32)_max_features"sqrt"
sklearn.ensemble._forest.RandomForestClassifier(32)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(32)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(32)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(32)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(32)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(32)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(32)_n_estimators64
sklearn.ensemble._forest.RandomForestClassifier(32)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(32)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(32)_random_state11902
sklearn.ensemble._forest.RandomForestClassifier(32)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(32)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9828 ± 0.0026
Per class
Cross-validation details (10-fold Crossvalidation)
0.9324 ± 0.0049
Per class
Cross-validation details (10-fold Crossvalidation)
0.8631 ± 0.0099
Cross-validation details (10-fold Crossvalidation)
0.6357 ± 0.0055
Cross-validation details (10-fold Crossvalidation)
0.2031 ± 0.0028
Cross-validation details (10-fold Crossvalidation)
0.4948 ± 0
Cross-validation details (10-fold Crossvalidation)
0.9326 ± 0.0049
Cross-validation details (10-fold Crossvalidation)
14980
Per class
Cross-validation details (10-fold Crossvalidation)
0.9331 ± 0.0051
Per class
Cross-validation details (10-fold Crossvalidation)
0.9326 ± 0.0049
Cross-validation details (10-fold Crossvalidation)
0.9924 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.4105 ± 0.0056
Cross-validation details (10-fold Crossvalidation)
0.4974 ± 0
Cross-validation details (10-fold Crossvalidation)
0.2631 ± 0.0035
Cross-validation details (10-fold Crossvalidation)
0.5289 ± 0.0071
Cross-validation details (10-fold Crossvalidation)
0.9297 ± 0.0047
Cross-validation details (10-fold Crossvalidation)