Run
10594028

Run 10594028

Task 361903 (Supervised Classification) Weather Uploaded 07-08-2023 by Peeradon Sukkasem
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.preprocessing._data.StandardScaler,n ominal=sklearn.preprocessing._encoders.OneHotEncoder),variancethreshold=skl earn.feature_selection._variance_threshold.VarianceThreshold,randomforestcl assifier=sklearn.ensemble._forest.RandomForestClassifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.preprocessing._data.StandardScaler,nominal=sklearn.preprocessing._encoders.OneHotEncoder),variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,randomforestclassifier=sklearn.ensemble._forest.RandomForestClassifier)(2)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.preprocessing._data.StandardScaler,nominal=sklearn.preprocessing._encoders.OneHotEncoder),variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,randomforestclassifier=sklearn.ensemble._forest.RandomForestClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "variancethreshold", "step_name": "variancethreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "randomforestclassifier", "step_name": "randomforestclassifier"}}]
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.preprocessing._data.StandardScaler,nominal=sklearn.preprocessing._encoders.OneHotEncoder),variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,randomforestclassifier=sklearn.ensemble._forest.RandomForestClassifier)(2)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.preprocessing._data.StandardScaler,nominal=sklearn.preprocessing._encoders.OneHotEncoder)(2)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.preprocessing._data.StandardScaler,nominal=sklearn.preprocessing._encoders.OneHotEncoder)(2)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.preprocessing._data.StandardScaler,nominal=sklearn.preprocessing._encoders.OneHotEncoder)(2)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.preprocessing._data.StandardScaler,nominal=sklearn.preprocessing._encoders.OneHotEncoder)(2)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.preprocessing._data.StandardScaler,nominal=sklearn.preprocessing._encoders.OneHotEncoder)(2)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": [1, 2]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "nominal", "step_name": "nominal", "argument_1": [0, 3]}}]
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.preprocessing._data.StandardScaler,nominal=sklearn.preprocessing._encoders.OneHotEncoder)(2)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.preprocessing._data.StandardScaler,nominal=sklearn.preprocessing._encoders.OneHotEncoder)(2)_verbose_feature_names_outtrue
sklearn.preprocessing._data.StandardScaler(18)_copytrue
sklearn.preprocessing._data.StandardScaler(18)_with_meantrue
sklearn.preprocessing._data.StandardScaler(18)_with_stdtrue
sklearn.preprocessing._encoders.OneHotEncoder(49)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(49)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(49)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(49)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(49)_max_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(49)_min_frequencynull
sklearn.preprocessing._encoders.OneHotEncoder(49)_sparse"deprecated"
sklearn.preprocessing._encoders.OneHotEncoder(49)_sparse_outputtrue
sklearn.feature_selection._variance_threshold.VarianceThreshold(13)_threshold0.0
sklearn.ensemble._forest.RandomForestClassifier(33)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(33)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(33)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(33)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(33)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(33)_max_features"sqrt"
sklearn.ensemble._forest.RandomForestClassifier(33)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(33)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(33)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(33)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(33)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(33)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(33)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(33)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(33)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(33)_random_state61516
sklearn.ensemble._forest.RandomForestClassifier(33)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(33)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.6222 ± 0.5
Per class
Cross-validation details (10-fold Crossvalidation)
0.6929
Per class
Cross-validation details (10-fold Crossvalidation)
0.3171 ± 0.5164
Cross-validation details (10-fold Crossvalidation)
0.1267 ± 0.3052
Cross-validation details (10-fold Crossvalidation)
0.4129 ± 0.1263
Cross-validation details (10-fold Crossvalidation)
0.4643 ± 0.0874
Cross-validation details (10-fold Crossvalidation)
0.7143 ± 0.2582
Cross-validation details (10-fold Crossvalidation)
14
Per class
Cross-validation details (10-fold Crossvalidation)
0.7056
Per class
Cross-validation details (10-fold Crossvalidation)
0.7143 ± 0.2582
Cross-validation details (10-fold Crossvalidation)
0.9413 ± 0.2576
Cross-validation details (10-fold Crossvalidation)
0.8892 ± 0.2591
Cross-validation details (10-fold Crossvalidation)
0.4795 ± 0.0916
Cross-validation details (10-fold Crossvalidation)
0.4827 ± 0.1636
Cross-validation details (10-fold Crossvalidation)
1.0067 ± 0.3045
Cross-validation details (10-fold Crossvalidation)
0.6444
Cross-validation details (10-fold Crossvalidation)